Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Map of SOUTHCOM Area</td>
<td>4</td>
</tr>
<tr>
<td>Diagrams of Mosquito Morphological Structures</td>
<td>5</td>
</tr>
<tr>
<td>Key to Female Mosquito Genera in SOUTHCOM, with Figures</td>
<td>6</td>
</tr>
<tr>
<td>Key to Female Mosquito Genera in SOUTHCOM, without Figures</td>
<td>21</td>
</tr>
<tr>
<td>Pictorial Comparison of the Mosquito Genera</td>
<td>23</td>
</tr>
<tr>
<td>Mosquito Genera Covered in this Key</td>
<td>27</td>
</tr>
<tr>
<td>Terms and Abbreviations of Adult Female Mosquitoes</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>
Introduction

How to use this key:
Identifying local mosquito genera is essential when establishing and carrying out control measures. This key uses characters to differentiate between mosquito genera found in the U.S. Southern Command (SOUTHCOM) area and insects that are not mosquitoes. Start at step 1 on page 6, and select the choice that matches your insect. Each selection will lead you to a specific mosquito genus or will send you to a new set of choices. Every numbered step is followed by a number in parentheses. This number in parentheses is the step number that sent you to your current choice. Continue through the key until you have identified your specimen.

Limitations
Characteristics in this key must be viewed with a dissecting microscope. This key is intended for field use; it will separate mosquito specimens into genera but will not identify mosquitoes to the species level. Mosquito genera contain both medically important species and species that do not transmit disease. Additional keys are required to identify the species within genera. Photos of characteristics used in this key have been selected for clarity of the character and may not be of the actual genus. Images of all mosquitoes are not readily available. Where photos of characteristics are not available for a specific genera, photos of other genera have been substituted. Substituted images may not be representative of the actual genera or from a genera found in the SOUTHCOM area.

Identifying local mosquito genera is essential when establishing and carrying out control measures.
Fig. 2. Diagrams of Mosquito Morphological Structures

Source: WRBU web site (2015); illustration adapted from Darsie & Ward (1981)
Key to Female Mosquito Genera in SOUTHCOM, with Figures

Genera covered in this key:

- Aedeomyia
- Culex
- Isostomyia
- Onirion
- Shannoniana
- Aedes
- Culiseta
- Johnbelkinia
- Orthopodomyia
- Toxorhynchites
- Anopheles
- Deinocerites
- Limatus
- Psorophora
- Trichoprosopon
- Chagasia
- Galindomyia
- Lutzia
- Runchomyia
- Uranotaenia
- Coquillettidia (Rhynchotaenia)
- Haemagogus
- Mansonia
- Sabethes
- Wyeomyia

Step: 01

A fly with needle-like mouthparts (fig. 3); scales covering the body (fig. 4); and scales on the wings (fig. 5) Mosquito - go to step 2

No needle-like mouthparts (figs. 6 & 7); body without scales (fig. 8); wings usually without scales (fig. 9) Not a Mosquito
Step: 02 (1)

Antennae bushy or feather-like, palpi (MPlp) as long as proboscis and bushy or with paddles (figs. 10-12) Male

Antennae not bushy or feather-like, palpi (MPlp) shorter than proboscis, proboscis with apical half not strongly recurved and not more slender than basal half (not tapering to a point) (figs. 13 & 14), wing not emarginated just beyond tip of vein CuA (fig. 15) Female Subfamily Culicinae - 3

Antennae not bushy or feather-like, palpi (MPlp) as long as proboscis, not bushy and without paddles. Proboscis not tapering to a point (figs. 16-18). Wing not emarginated (fig. 15) Female Subfamily Anophelinae - 4

Antennae not bushy or feather-like, proboscis (P) with apical half strongly recurved and more slender than basal half (tapering to a point) (fig. 19), wing with posterior edge emarginated just beyond tip of vein CuA (fig. 20) Female - Toxorhynchites

Fig. 10. Palpi as long as proboscis: Male *Ae. caspius*

Fig. 11. Palpi with paddles: Male *An. dthal*

Fig. 12. Antennae feather-like: Male *Cx. univittatus*

Fig. 13. Palpi shorter than proboscis: *Ae. aegypti*

Fig. 14. Antennae not bushy or feather-like: *Ma. africana*

Fig. 15. Wing not emarginated beyond tip of CuA

Fig. 16. Palpi as long as proboscis: *An. aquasalis*

Fig. 17. Palpi without paddles: *An. aztecus*

Fig. 18. Antennae not bushy or feather-like: *An. dirus*

Fig. 19. Proboscis strongly bent and tapering: *Tx. rutilus*

Fig. 20. Wing emarginated beyond tip of CuA (V-shaped thickening in hindmargin of wing)
Step: 03 (2)

Antennal flagellomere 1 (Flm-1) more than twice as long as flagellomere 2 (Flm-2) (fig. 21); antenna longer than proboscis 18

Antennal flagellomere 1 (Flm-1) less than twice as long as flagellomere 2 (about the same length) (fig. 22); antenna not longer than proboscis. These are the common features for most mosquitoes. 5

All antennal flagellomeres of females are unusually short and thick (fig. 23); Hindfemur with a tuft of suberect scales at apex (fig. 24)

Aedeomyia

Fig. 21. Antennal flagellomere 1 (Flm-1) more than twice as long as flagellomere 2 (Flm-2); antenna longer than proboscis: *De. pseudes*

Fig. 22. Antennal flagellomere 1 (Flm-1) less than twice as long as Flm-2 (about the same length): *Ae. tormentor*

Fig. 23. All antennal flagellomeres of females are unusually short and thick: *Ad. catastica*

Fig. 24. Hindfemur with a tuft of suberect scales at apex: *Ad. furfurea*
Step: 04 (2)

Posterior margin of scutellum (Stm) evenly rounded or slightly trilobed, with setae more-or-less evenly distributed (fig. 25); paratergite (Pa) without scales (fig. 26) \(\text{Anopheles} \)

Posterior margin of scutellum (Stm) trilobed, with setae in three distinct groups (fig. 27); paratergite (Pa) with scales (PaSc) (fig. 28) \(\text{Chagasia} \)

Fig. 25. Scutellum evenly rounded: *An. crucians*

Fig. 26. Paratergite without scales: *An. punctipennis*

Fig. 27. Scutellum trilobed with setae in three distinct groups: *Chagasia fajardi*

Fig. 28. Paratergite with scales: *Ae. aegypti*
Step: 05 (3)

Arrangement of silvery scales extending from scutum (Scu) to coxae in a single broad, vertical band (fig. 29)

Arrangement of silvery scales extending from scutum to coxae in three vertical arcs (fig. 30)

Not as described above (fig. 31)

Fig. 29. Single broad vertical band: *Hg. janthinomys*

Fig. 30. Three vertical arcs: *Hg. leucocelaenus*

Fig. 31. Horizontal bands: *Orthopodomyia* spp.
Step: 06 (5)

Base of hind coxa (C-III) in line with, or slightly above, base of mesomeron (Msm) (fig. 32); AND wing scales narrow (fig. 35), but if broad, then not strongly asymmetrical (fig. 36)

Base of hind coxa (C-III) distinctly ventral to base of mesomeron (Msm) (fig. 33); AND wing scales broad, strongly asymmetrical (fig. 37)

Base of hind coxa (C-III) distinctly ventral to base of mesomeron (Msm) (fig. 34); AND wing scales narrow (fig. 35), but if broad, then not strongly asymmetrical (fig. 36)

Fig. 32. C-III in line with base of Msm: Tr. digitatum

Fig. 33. C-III below base of Msm: Ma. titillans

Fig. 34. C-III below base of Msm: Ae. scapularis

Fig. 35. Wing scales narrow: Cx. sitiens

Fig. 36. Wing scales broad

Fig. 37. Wing scales broad, strongly asymmetrical: Mansonia
Step: 07 (6)
Prespiracular setae (PsS) present AND postspiracular setae (PS) present (fig. 38)
Johnbelkinia

Prespiracular setae (PsS) present AND postspiracular setae absent [no setae in the postspiracular area (PA)] (figs. 39 & 40)
8

Prespiracular setae absent [no setae in the prespiracular area (PsA)], prespiracular scales (PsSc) present AND postspiracular setae absent [no setae in the postspiracular area (PA)] (fig. 41)
Limatus

Fig. 38. PsS present AND PS present: *Ps. ferox*
Fig. 39. PsS present AND postspiracular setae absent: *Tr. digitatum*

Fig. 40. PsS present AND postspiracular setae absent: *Cs. morsitans*
Fig. 41. PsSc present instead of setae and postspiracular setae absent: *Limatus* spp.

Step: 08 (7)
Wing scales on dorsal surface narrow (fig. 42)
Wyeomyia

Wing scales on dorsal surface broad (fig. 43)
9

Fig. 42. Wing scales narrow: *Culex* spp.
Fig. 43. Wing scales broad: *Ae. poicilius*
Step: 09 (8)
Lower mesokatepisternal setae (MkSL) extend well above lower edge of mesanepimeron (Mam) (fig. 44) 10
Lower mesokatepisternal setae (MkSL) absent or restricted to area below lower edge of mesanepimeron (Mam) (fig. 45) 11

Fig. 44. MkSL extend well above lower edge of Mam: Cx. portesi

Fig. 45. MkSL absent or restricted to area below lower edge of Mam: Ru. cerqueira

Step: 10 (9)
Postprocoxal scales (PpSc) present on postprocoxal membrane (PM) (fig. 46) Shannoniana
Scales absent on postprocoxal membrane (PM) (fig. 47) Trichoprosopon

Fig. 46. PpSc present on postprocoxal membrane (PM): Wy. arthrostigma

Fig. 47. Scales absent on postpronotum (Ppn): Tr. digitatum
Step: 11 (9)

One or more posterior postpronotal setae (PpS) present on postpronotum (Ppn) *(fig. 48)*

Postpronotal setae absent. No setae on the postpronotum (Ppn) *(fig. 49)*

Step: 12 (11)

White scales present on one or two tarsomeres (Ta1-5) of mid- and hindtarsi *(fig. 50)* *Johnbelkinia*

White scales absent on tarsi, or tarsi entirely dark-scaled *(fig. 51)* *Runchomyia*

Fig. 48. One or more PpS present on postpronotum (Ppn): Ae. japonicus

Fig. 49. Postpronototal setae absent: An cruzii

Fig. 50. White scales present on one or two tarsomeres: Mi. mimomyiaformis

Fig. 51. White scales absent on tarsi, or tarsi entirely dark-scaled: Ar. subalbatus
Step: 13 (11)

Proboscis about as long as, or shorter than, forefemur (fig. 52); OR the midtarsus has bright white scaling on the anterior surface from the middle of tarsomere 2 through tarsomere 5, and the hindtarsus has similar scaling ventrally from the middle of tarsomere 3 through tarsomere 5 (fig. 53)

Onirion

Proboscis distinctly longer than forefemur (fig. 55) OR all tarsi completely dark (fig. 54)

Isostomyia

Fig. 52. Proboscis about as long as forefemur

Fig. 53. Midtarsus with bright white scaling: *On. personatum*

Fig. 54. All tarsi completely dark: *Is. espini*

Fig. 55. Proboscis distinctly longer than forefemur
Step: 14 (6)

Vein 1A ending before, or at level with, intersection (fork) of m-cu (fig. 56)
Uranotaenia

Vein 1A ending beyond intersection (fork) of m-cu (fig. 57)

Fig. 56. Vein 1A ending before intersection (fork) of m-cu: *Uranotaenia* spp.

Fig. 57. Vein 1A ending beyond intersection (fork) of m-cu: *Culex* spp.

Step: 15 (14)

Prespiracular setae (PsS) present AND postspiracular setae (PS) present (fig. 58)
Psorophora

Prespiracular setae (PsS) present AND postspiracular setae absent [no setae in the postspiracular area (PA)] (fig. 59)
Culiseta

Prespiracular setae absent [no setae in the prespiracular area (PsA)] AND postspiracular setae (PS) present (fig. 60)

Prespiracular setae absent [no setae in the prespiracular area (PsA)] AND postspiracular setae absent [no setae in the postspiracular area (PA)] (fig. 61)

Fig. 58. PsS present AND PS present: *Ps. ferox*

Fig. 59. PsS present AND postspiracular setae absent: *Cs. longiareolata*

Fig. 60. Prespiracular setae absent and PS present: *Cq. venezuelensis*

Fig. 61. Prespiracular and postspiracular setae absent: *Cx. quinquefasciatus*
Step: 16 (15)

Conspicuous preapical white band or spot on the anterior surface of the femora (fig. 62);
Neotropical species (subgenus Rhynchotaenia) are distinct in having this character

<table>
<thead>
<tr>
<th>Coquillettidia (Rhynchotaenia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No white band or spot on the anterior surface of the femora (fig. 63)</td>
</tr>
<tr>
<td>Aedes</td>
</tr>
</tbody>
</table>

![Fig. 62. White band on the anterior surface of the femora: Coquillettidia](image1)

![Fig. 63. No preapical white bands on the femora: Ae. taeniorhynchus](image2)

Step: 17 (15)

Tarsomere 1 (Ta1) longer than tarsomeres 2-5 combined. Ta4 shorter than Ta5 (fig. 64)

<table>
<thead>
<tr>
<th>Orthopodomyia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarsomere 1 (Ta1) as long as, or shorter than, tarsomeres 2-5 combined (Ta2-5), Ta4 longer than Ta5 (fig. 65)</td>
</tr>
</tbody>
</table>

![Fig. 64. Tarsomere 1 (Ta1) longer than tarsomeres 2-5 combined, tarsomere Ta4 shorter than Ta5: Orthopodomyia sp](image3)

![Fig. 65. Tarsomere 1 shorter than tarsomeres 2-5 combined, tarsomere Ta4 longer than Ta5: Cx. quinquefasciatus](image4)
Step: 18 (3)

Proboscis about as long as, or shorter than, forefemur (fig. 66); OR erect forked scales numerous on vertex and usually occiput (fig. 67)

Deinocerites

Proboscis distinctly longer than forefemur (fig. 68); OR erect forked scales restricted to occiput (fig. 69), differs from *Deinocerites* in having the proboscis swollen apically

Galindomyia

![Fig. 66. Proboscis about as long as forefemur](image)

![Fig. 67. Erect forked scales numerous on vertex](image)

![Fig. 68. Proboscis distinctly longer than forefemur](image)

![Fig. 69. Erect forked scales restricted to occiput](image)
Step: 19 (5)

One or more posterior postpronotal setae (PpS) present on postpronotum (Ppn) (fig. 70); OR wing scales narrow (fig. 72), but if broad, then not strongly asymmetrical (fig. 73)

Haemagogus

Upper postpronotal setae absent [no setae on the postpronotum (Ppn)] (fig. 71); OR wing scales broad, strongly asymmetrical (fig. 74)

Sabethes

Fig. 70. One or more PpS present on postpronotum: *Hg. janthinomys*

Fig. 71. Upper postpronotal setae absent: *Sa. chloropterus*

Fig. 72. Wing scales narrow: *Cx. sitiens*

Fig. 73. Wing scales broad

Fig. 74. Wing scales broad, strongly asymmetrical: *Mansonia spp.*
Step: 20 (17)

Zero to three lower mesepimeral setae (MeSL) (Fig. 75)
Culex

Four or more lower mesepimeral setae (MeSL) (Fig. 76)
Lutzia

Fig. 75. One lower mesepimeral setae (MeSL) *Cx. quinquefasciatus***

Fig. 76. Four or more lower mesepimeral setae (MeSL) *Lt. tigripes*
Key to Female Mosquito Genera in SOUTHCOM, without Figures

1. Mosquito - Non Mosquito

- A fly with needle-like mouthparts ([fig. 3](#)); scales covering the body ([fig. 4](#)); and scales on the wings ([fig. 5](#)) **Mosquito—2**
- No needle-like mouthparts ([figs. 6 & 7](#)); body without scales ([fig. 8](#)); wings usually without scales ([fig. 9](#)) **Not a Mosquito**

2 (1).

- Antennae bushy or feather-like, palpi (MPlp) as long as proboscis and bushy or with paddles ([figs. 10-12](#)) **Male**
- Antennae not bushy or feather-like, palpi (MPlp) shorter than proboscis, proboscis with apical half not strongly recurved and not more slender than basal half (not tapering to a point) ([figs. 13 & 14](#)), wing not emarginated just beyond tip of vein CuA ([fig. 15](#)) **Female (Culicinae)—3**
- Antennae not bushy or feather-like, palpi (MPlp) as long as proboscis, not bushy and without paddles. Proboscis not tapering to a point ([figs. 16-18](#)). Wing not emarginated ([fig. 15](#)) **Female (Anophelinae)—4**

3 (2).

- Antennal flagellomere 1 (Flm-1) more than twice as long as flagellomere 2 (Flm-2) ([fig. 21](#)); antenna longer than proboscis **18**
- Antennal flagellomere 1 (Flm-1) less than twice as long as flagellomere 2 (about the same length) ([fig. 22](#)); antenna not longer than proboscis. These are the common features for most mosquitoes **5**

4 (2).

- Posterior margin of scutellum (Stm) evenly rounded or slightly trilobed, with setae more-or-less evenly distributed ([fig. 25](#)); paratergite (Pa) without scales ([fig. 26](#)) **Anopheles**
- Posterior margin of scutellum (Stm) trilobed, with setae in three distinct groups ([fig. 27](#)); paratergite (Pa) with scales (PaSc) ([fig. 28](#)) **Chagasia**

5 (3).

- Arrangement of silvery scales extending from scutum (Scu) to coxae in a single broad, vertical band ([fig. 29](#)) **19**
- Arrangement of silvery scales extending from scutum to coxae in three vertical arcs ([fig. 30](#)) **Haemagogus**
- Not as described above ([fig. 31](#)) **6**

6 (5).

- Base of hind coxa (C-III) in line with, or slightly above, base of mesomeron (Msm) ([fig. 32](#)); AND wing scales narrow ([fig. 35](#)), but if broad, then not strongly asymmetrical ([fig. 36](#)) **7**
- Base of hind coxa (C-III) distinctly ventral to base of mesomeron (Msm) ([fig. 33](#)); AND wing scales broad, strongly asymmetrical ([fig. 37](#)) **Manson**
- Base of hind coxa (C-III) distinctly ventral to base of mesomeron (Msm) ([fig. 34](#)); AND wing scales narrow ([fig. 35](#)), but if broad, then not strongly asymmetrical ([fig. 36](#)) **14**

7 (6).

- Prespiracular setae (PsS) present AND postspiracular setae (PS) present ([fig. 38](#)) **Johnbelkinia**
- Prespiracular setae (PsS) present AND postspiracular setae absent [no setae in the postspiracular area (PA)] ([figs. 39 & 40](#)) **8**
- Prespiracular setae absent [no setae in the prespiracular area (PsA)], prespiracular scales (PsSc) present AND postspiracular setae absent [no setae in the postspiracular area (PA)] ([fig. 41](#)) **Limatus**

8 (7).

- Wing scales on dorsal surface narrow ([fig. 42](#)) **Wyeomyia**
- Wing scales on dorsal surface broad ([fig. 43](#)) **9**

9 (8).

- Lower mesokatepisternal setae (MkSL) extend well above lower edge of mesanepimeron (Mam) ([fig. 44](#)) **10**
- Lower mesokatepisternal setae (MkSL) absent or restricted to area below lower edge of mesanepimeron (Mam) ([fig. 45](#)) **11**
<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (9).</td>
<td>Postprocoxal scales (PpSc) present on postprocoxal membrane (PM)</td>
<td>Shannoniana</td>
</tr>
<tr>
<td></td>
<td>Scales absent on postprocoxal membrane (PM)</td>
<td>Trichoprosopon</td>
</tr>
<tr>
<td>11 (9).</td>
<td>One or more posterior postpronotal setae (PpS) present on postpronotum (Ppn)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Postpronotal setae absent. No setae on the postpronotum (Ppn)</td>
<td>13</td>
</tr>
<tr>
<td>12 (11).</td>
<td>White scales present on one or two tarsomeres (Ta1-5) of mid–and hindtarsi</td>
<td>Johnbelkinia</td>
</tr>
<tr>
<td></td>
<td>White scales absent on tarsi, or tarsi entirely dark-scaled</td>
<td>Runchomyia</td>
</tr>
<tr>
<td>13 (11).</td>
<td>Proboscis about as long as, or shorter than, forefemur; OR the midtarsus has bright white scaling on the anterior surface from the middle of tarsomere 2 through tarsomere 5, and the hindtarsus has similar scaling ventrally from the middle of tarsomere 3 through tarsomere 5</td>
<td>Onirion</td>
</tr>
<tr>
<td></td>
<td>Proboscis distinctly longer than forefemur OR all tarsi completely dark</td>
<td>Isostomyia</td>
</tr>
<tr>
<td>14 (6).</td>
<td>Vein 1A ending before, or at level with, intersection (fork) of m-cu</td>
<td>Uranotaenia</td>
</tr>
<tr>
<td></td>
<td>Vein 1A ending beyond intersection (fork) of m-cu</td>
<td>15</td>
</tr>
<tr>
<td>15 (14).</td>
<td>Prespiracular setae (PsS) present AND postspiracular setae (PS) present</td>
<td>Psorophora</td>
</tr>
<tr>
<td></td>
<td>Prespiracular setae (PsS) present AND postspiracular setae absent (no setae in the postspiracular area (PA))</td>
<td>Culiseta</td>
</tr>
<tr>
<td></td>
<td>Prespiracular setae absent [no setae in the prespiracular area (PsA)] AND postspiracular setae (PS) present</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Prespiracular setae absent [no setae in the prespiracular area (PsA)] AND postspiracular setae absent [no setae in the postspiracular area (PA)]</td>
<td>17</td>
</tr>
<tr>
<td>16 (15).</td>
<td>Conspicuous preapical white band or spot on the anterior surface of the femora; neotropical species (subgenus Rhynchotaenia) are distinct in having this character</td>
<td>Coquillettidia (Rhynchotaenia)</td>
</tr>
<tr>
<td></td>
<td>No white band or spot on the anterior surface of the femora</td>
<td>Aedes</td>
</tr>
<tr>
<td>17 (15).</td>
<td>Tarsomere 1 (Ta1) longer than tarsomeres 2-5 combined. Ta4 shorter than Ta5.</td>
<td>Orthopodomyia</td>
</tr>
<tr>
<td></td>
<td>Tarsomere 1 (Ta1) as long as, or shorter than, tarsomeres 2-5 combined, Ta4 longer than Ta5</td>
<td>20</td>
</tr>
<tr>
<td>18 (3).</td>
<td>Proboscis about as long as, or shorter than, forefemur; OR erect forked scales numerous on vertex and usually occiput</td>
<td>Deinocerites</td>
</tr>
<tr>
<td></td>
<td>Proboscis distinctly longer than forefemur; OR erect forked scales restricted to occiput, differs from Deinocerites in having the proboscis swollen apically</td>
<td>Galindomyia</td>
</tr>
<tr>
<td>19 (5).</td>
<td>One or more posterior postpronotal setae (PpS) present on postpronotum (Ppn); OR wing scales narrow, but if broad, then not strongly asymmetrical</td>
<td>Haemagogus</td>
</tr>
<tr>
<td></td>
<td>Upper postpronotal setae absent [no setae on the postpronotum (Ppn)]; OR wing scales broad, strongly asymmetrical</td>
<td>Sabethes</td>
</tr>
<tr>
<td>20 (17).</td>
<td>Zero to three lower mesepimeral setae (MeSL)</td>
<td>Culex</td>
</tr>
<tr>
<td></td>
<td>Four or more lower mesepimeral setae</td>
<td>Lutzia</td>
</tr>
</tbody>
</table>
Fig. 77. Pictorial Comparison of the Mosquito Genera

Aedeomyia squamipennis
Aedes (Aedimorphus) vexans
Anopheles (Anopheles) pseudopunctipennis
Chagasia bathana
Coquillettidia (Rhynchotaenia) nigricans
Culex (Culex) pipiens

All Fig. 77 photos are courtesy of WRBU unless otherwise noted.
Fig. 77. Pictorial Comparison of the Mosquito Genera

Culiseta (Culicella) morsitans
Deinocerites pseudes
Galindomyia leei
Haemagogus (Haemagogus) janthinomys
Isostomyia espini
Johnbelkinia ulopus
Fig. 77. Pictorial Comparison of the Mosquito Genera

Lutzia (Metalutzia) fuscana

Mansonina (Mansonina) titillans

Onirion personatum

Orthopodomyia albicosta

Psorophora (Janthinosoma) ferox
Fig. 77. Pictorial Comparison of the Mosquito Genera

- Runchomyia (Ctenogoeldia) magna
- Sabethes (Sabethes) tarsopus
- Shannoniana (Species unknown)
- Toxorhynchities (Lynchiella) rutilus
- Trichoprosopon spp. ©Steve Marshall
- Uranotaenia (Uranotaenia) sapphirina
- Wyeomyia arthrostigma
Mosquito Genera Covered in This Key
Adapted from the Mosquito Taxonomic Inventory

Aedeomyia—A few arboviruses and avian malarial protozoa have been isolated from species of *Aedeomyia*, but none of the species are considered to be medically important to humans. Females of *Aedeomyia* feed predominantly on birds. *Aedeomyia africana* have been collected from human bait stationed on platforms in forest canopy, but members of the genus are not normally attracted to humans.

Aedes—Certain members of the tribe are of great importance in the transmission of viruses and helminths to humans and other animals. The immature stages of *Stegomyia* are found in natural and artificial containers. Typical habitats are tree holes, but many species inhabit small amounts of water contained in dead and fallen plant parts.

Anopheles—Mosquitoes of genus *Anopheles* are the sole vectors of human malarial parasites. Some species are effective vectors of microfilariae, and some may be involved in the transmission of encephalitis viruses. *Anopheles* are vectors of numerous animal pathogens, including species of malaria protozoa that do not affect humans. *Anopheles* larvae are adapted to a variety of aquatic habitats but occur predominantly in ground waters. The larvae generally rest with the end of the abdomen against objects and are, therefore, found in greatest numbers in areas with emergent vegetation at the margins of the habitats. The adults of most *Anopheles* are active at night or during twilight periods, and they rest in cool, damp places during the day.

Chagasia—Species are not known to transmit any diseases to humans. Females bite during the day and night but seldom feed on humans.

Coquillettidia (Rhy.)—Some species are notorius pests of humans and domestic animals in Africa, Europe, and North America. Several species of subgenus *Coquillettidia* and *Rhynchoctania* are natural vectors of various arboviruses. The females of several species readily attack humans. Both nocturnal and diurnal biters are known.

Culex—Several species of subgenus *Culex* and *Melanoconion* are of medical importance. *Melanoconion* mainly occurs in the Neotropical Region. Several species of the subgenus are important vectors of encephalitis and other arboviruses. *Subgenus Culex* has species in all zoogeographic regions and contains most of the medically important and pest species of the genus. *Culex* larvae occur primarily in semi-permanent or permanent bodies of ground water. Some utilize artificial containers. A few species, including the filarial vector *Cx. quinquefasciatus*, are found in organically-polluted waters. Females bite at night.

Culiseta—Three species, *C. inornata*, *C. melanura* and *C. dyari*, are vectors of both Eastern and Western equine encephalitis virus in North America. Little is known about the blood-feeding habits of females. Most species feed on birds and mammals, but a few feed on reptiles. Several species attack domestic animals and occasionally humans.

Deinocerites—Venezuelan and St. Louis equine encephalitis viruses have been isolated from *Deinocerites pseudes*, and laboratory studies have shown that this species is capable of transmitting these viruses. Nevertheless, species of *Deinocerites* are not important pests of humans and probably play little, if any, role in the transmission of pathogens. The feeding preferences of females are not well known, but some species feed on a variety of hosts, including humans and other mammals, birds, lizards, frogs, and toads.

Galinomyia—*Galinomyia leei* is not a medically important species. *Galinomyia leei* has only been collected from Colombia and Ecuador.

Haemagogus—Several species, including *Hg. janthinomys*, *Hg. equinus*, *Hg. lucifer*, *Hg. leucocelaenus*, *Hg. mesodentatus*, *Hg. spegazzinii* and *Hg. capricornii*, are vectors of sylvatic yellow fever virus. *Iluh. virus* has been isolated from *Hg. janthinomys* and *Hg. spegazzini* in Panama and from *Hg. leucocelaenus* in Brazil. Many species readily attack humans in forest clearings, open secondary growth, and littoral situations associated with mangroves.

Isostomyia—The bionomics of *Isostomyia* is largely unknown, but it is unlikely that the species are involved in the transmission of pathogens to humans. The adults are known to enter houses and bite humans outdoors in domestic areas.

Johnbelkinia—Arboviruses have been isolated from *Jn. ulopus* in Trinidad and Colombia, hence species of *Johnbelkinia* are considered to be potential vectors of pathogens of human diseases. Species of this genus are known to carry the eggs of the host bot fly, *Dermatobia hominis*. They are mainly active during the day. females bite humans and other mammals.

Limatus—*Wyeomyia* virus has been isolated from a pool of *Limatus* in Trinidad, and Venezuelan equine encephalitis virus has been isolated from *Li. flavisetosus*, but species of the virus are not likely to be of medical or economic importance to humans. Adults have been captured during landing-biting collections made at ground level and on towers in forests.

Lutzia—None of the species of *Lutzia* are of medical or economic importance. The larvae of all species are predaceous. The adults are diurnal, and the females of many species avidly bite humans.

Runchomyia—*Runchomyia* species are unlikely to be of medical or economic importance to humans. The adults of at least two species have been captured during landing-biting collections in forests.

Sabethes—*Sabethes chloropterus* appears to play a role in the transmission of yellow fever virus in Central America. *Iluh. virus* and *St. Louis* equine encephalitis viruses have also been isolated from this species in Panama; the latter virus has been isolated from *Sa. belisarioi* in Brazil. *Sabethes* are attracted to humans on the ground but are most abundant in the forest canopy. Blood-seeking species of subgenus *Sabethes* approach humans slowly and have a predilection for landing on the nose.

Shannoninia—Species of *Shannoninia* are unlikely to be of medical or economic importance to humans. Females have been captured while landing-biting on horses and humans in forests during the daytime.

Toxorhynchites—Species of *Toxorhynchites* are not involved in the transmission of human or animal pathogens. The larvae of a few species have been used with some success to control economically important mosquitoes whose larvae inhab it plant cavities and artificial containers. Males and females both feed exclusively on nectar and other sugary substances. The adults are active during the day.

Trichoprosopon—*Trichoprosopon digitatum* is regarded as a potential vector of arboviruses to humans. *Pixuna* and *Wyeomyia* viruses have been isolated from this species. *Bussuquara*, *Ilheus*, and *St. Louis* encephalitis viruses have been isolated from mixed pools that included this species. Females of a few species are known to bite humans in shaded areas during the daytime.

Uranotaenia—A few species bite humans, but none are involved in the transmission of pathogens. Many species are attracted to light and are occasionally found resting inside houses.

Wyeomyia—*Wyeomyia* are not known to vector disease agents and have little, if any, economic importance to humans; however, *Iluh. virus* and Venezuelan equine encephalitis viruses have been isolated from *Wy. mediaoalbipes* in Trinidad. Most of the species take blood meals, and females readily feed on humans that enter their realm.
Anterior—Nearer the front or nearer to the head.

Apical—Concerning the tip or furthest part from the thorax.

Asymmetrical wing scale—Unlike on either side of a dividing line from the stem of the scale to the tip.

Basal—Region close to the point of attachment to the thorax.

C-III—Hind Coxa. The basal segment of the hind pair of legs; Coxa are referred to as fore-(C-I), mid-(C-II) or hindcoxa (C-III).

Emarginated wing—V-shaped thickening or cut-out place in hindmargin of wing.

Flm—Fagellomere. An individual unit of the antennal flagellum. Flm-1 is the first segment.

Mam—Mesanepimeron. The large, upper area of the mesepimeron. Contains scales and setae. The group of setae on the lower portion of this structure (MeSL) are often used in keys. Their grouping pattern varies between mosquitoes.

MeSL—The setae occurring in groups on the anterior, middle, and/or posterior area of the mesanepimeron below the level of the metathoracic spiracle.

Mks—Mesokatepisternum. Lower area of the mesokatepisternum.

MkSL—Lower mesokatepisternal setae. The setae occurring in a more-or-less vertical line along the posterior margin of the mesokatepisternum.

MPlp—Maxillary palpus. Varies in length according to genus and sex. Male MPlp are usually longer than the proboscis, have paddle-like structures, and can be very hairy. Female *Anopheles* MPlp are as long as the proboscis but lack the paddles. MPlp that are shorter than the proboscis indicate a non-*Anopheles* female mosquito.

Msm—Mesomeran. A triangular structure located above and between the mid- and hindcoxa. The base of the Msm is located between the Mam and the Msm.

Mts—Metepisternum. In mosquitoes, the area immediately behind and below the metathoracic spiracle.

MtSc—Metepisternal scales. The scales occurring in a small group on the Mts just below the metathoracic spiracle.

Mtx—Metaxepisternum. The large, uper area of the mesanepimeron below the level of the mesothoracic spiracle.

Msc—Metesmeron. A triangular structure located above and between the antepronotum and the mesothoracic spiracle.

Msm—Mesomeran. A triangular structure located above and between the mid- and hindcoxa. The base of the Msm is located between the Mam and the Msm.

Mts—Metepisternum. In mosquitoes, the area immediately behind and below the metathoracic spiracle.

MtSc—Metepisternal scales. The scales occurring in a small group on the Mts just below the metathoracic spiracle.

NtSc—Notal scales. The scales occurring on the paranotal suture. Scales on this structure are called PaSc.

P—Proboscis.

Pa—Paragaster. Narrow lateral part of the mesonotum just before the wing root; separated from the scutum by the paranotal suture. Scales on this structure are called PaSc.

PA—Postspiracular area. The sclerotized area of the anterior anepisternum lying posterior to the mesothoracic spiracle; connected or continuous with the subspiracular area ventrally; scales (PaSc) and setae (PS) are borne on this area.

PaS—Paratergal scales. The scales occurring in a group on the paratergite (Pa).

PM—Postprocoxal membrane. The membrane between the forecoxa and the mesokatepisternum; sometimes bearing scales (PpSc).

PpS—Postpronotal setae. The setae occurring in an arcuate line on the upper posterior margin of the postpronotum (Ppn).

PS—Postspiracular setae. The setae occurring in a group on the postspiracular (PA) area.

Pv—Pulvillus. Pad-like lobes on the tips of the legs between the tarsal claws. Only *Culex, Deinocerites, Galindomyia*, and *Lutzia* genera have this structure.

Pps—Prespiracular setae. The setae occurring in the small triangular prespiracular area (Psa).

PsS—Prespiracular scales. The scales occurring on the prespiracular area (PsA).

PsA—Prespiracular area. A small triangular area above and forward of the mesothoracic spiracle. When setae are present, they are referred to as PsS and, with scales, as PsSc.

Ptm—Pterothorax. The part of the thorax between the mesothorax and the metathorax.

Pv—Pulvillus. Pad-like lobes on the tips of the legs between the tarsal claws. Only *Culex, Deinocerites, Galindomyia*, and *Lutzia* genera have this structure.

Scu—Scutum. The dorsal area of the thorax.

Stm—Scutellum. In Culicinae mosquitoes, except *Toxorhynchites*, it is trilobed. *Anopheles* have an evenly rounded shape except for *Chagasia*, which is trilobed.

Ta—Tarsus. The part of the leg that comes after the tibia. In mosquitoes, it consists of five tarsomeres (Ta1-5); referred to as fore-, mid- or hindtarsus as appropriate.

Ta1—Tarsomere one. An individual sub-segment of a tarsus. In mosquitoes, five tarsomeres comprise each tarsus; referred to as the first through the fifth tarsomeres of the appropriate tarsus and denoted by adding numerical subscripts (1-5) to the abbreviation of the tarsus.
References

Genera classification follows the “traditional” mosquito classification as of 2000 from the Walter Reed Biosystematics Unit (WRBU) web site (2013).

The key and the genera list are derived from the WRBU SOUTHCOM Lucid Key (2015), http://wrbu.si.edu/command_aors_MQkeys.html.

The genera descriptions were adapted from the Harbach R. (2014) Mosquito Taxonomic Inventory at http://mosquitotaxonomic-inventory.info/simpletaxonomy/term/6231. License link: http://creativecommons.org/licenses/by/3.0/

The medically important species list was derived from the WRBU medically important species list and from the Mosquito Taxonomic Inventory web site (2014).

Character abbreviations of adult female morphology follow the Darsie and Ward (2005) format.

Other resources used to develop this key:

Lane, J. 1953. Neotropical Culicidae Volume I & II. Sao Paulo, Brazil: University of Sao Paulo.

Mosquito Taxonomic Inventory web site 2015, http://mosquitotaxonomic-inventory.info/

WRBU web site 2015, http://wrbu.si.edu/

Photo Credits:

WRBU photos: Judith Stoffer, Walter Reed Biosystematics Unit

APHC (Provisional) photos: Graham Snodgrass, Army Public Health Center (Provisional)

PHCR-Europe photos: CPT Brian Knott, U.S. Army; Army Public Health Center (Provisional)