AUTHORITY: This periodic occupational and environmental monitoring summary (POEMS) has been developed in accordance with Department of Defense (DoD) Instructions 6490.03, 6055.05, and JCSM (MCM) 0028-07 (References 1-3).

PURPOSE: This POEMS documents the Department of Defense (DoD) assessment of occupational and environmental health (OEH) risk for Forward Support Base (FSB) Herat and Vicinity, Afghanistan includes: Combat Outposts (COP) Metro; Qadis; and Ricketts; Camps Arena/FSB Herat (Gilbert); Bazaara Khona (COP Reaper, Bashaur Khona); Zafar; Chasma-e-Dozakh; Chapchal; Cougar; Darrah I Bum; Delorean; Henderson; Injil; Islam Qala; Lawton; Qal-e-Naw; Parmakan; Robat Sangi (Robat); Sanowghan (Safe Home); Shouz; Thomas; Forward Operating Bases (FOB) Adraskan; Shindand Airbase (Shaf, Napier); Stone; and Todd / BMG (Bala Morghab) Herat Provincial Reconstruction Team (PRT); and Patrol Base (PB) Red Leg. It presents a qualitative summary of health risks identified at this location and their potential medical implications. The report is based on information collected from 9 December 2006 through 31 December 2015 to include deployment OEH surveillance sampling and monitoring data (e.g., air, water, and soil), field investigation and health assessment reports, as well as country and area-specific information on endemic diseases.

This assessment assumes that environmental sampling at FSB Herat and Vicinity during this period was performed at representative exposure points selected to characterize health risks at the population–level. Due to the nature of environmental sampling, the data upon which this report is based may not be fully representative of all the fluctuations in environmental quality or capture unique occurrences. While one might expect health risks pertaining to historic or future conditions at this site to be similar to those described in this report, the health risk assessment is limited to 9 December 2006 through 31 December 2015.

The POEMS can be useful to inform healthcare providers and others of environmental conditions experienced by individuals deployed to FSB Herat and Vicinity during the period of this assessment. However, it does not represent an individual exposure profile. Individual exposures depend on many variables such as; how long, how often, where and what someone is doing while working and/or spending time outside. Individual outdoor activities and associated routes of exposure are extremely variable and cannot be identified from or during environmental sampling. Individuals who sought medical treatment related to OEH exposures while deployed should have exposure/treatment noted in their medical record on a Standard Form (SF) 600 (Chronological Record of Medical Care).

SITE DESCRIPTION:

Base camps included in FSB Herat and vicinity are located in Herat and Badghis provinces of western Afghanistan. The provinces are bordered with Iran and Turkmenistan to the west. Herat Province is relatively flat except in the east along the Hindu Kush mountain range. The province is traversed from east to west by the Hari-Rud River, along which most of the people live in agricultural oases. Badghis Province is bordered by Herat Province to the southwest. Badghis Province is dominated by isolated hills and the Murghab River. Badghis Province remains extremely underdeveloped, especially outside the provincial capital of Qalay-E-Naw.

The FOB Qual-E-Naw is located in a mountainous area with a small air field controlled by Spanish Forces. The U.S. Soldiers had access to the dining facilities (DFAC) and gym in the Spanish portion of the base. Sanitation and water production were performed by local nationals (LN) which were contracted though the Spanish (Reference 4).
The Herat FSB consists of two camps, the Italian Camp and the Spanish Camp. Together these camps are referred to as “Camp Arena”. Each camp contains facilities for billeting, administration, community (commercial and service), medical and infrastructure. The camps include personnel from Albania, Lithuania, Bulgaria, Spain, Italy, and the U.S. (Reference 5).

The FOB Shindand AB (Airbase) is located within a much larger Afghan National Army (ANA) training center. The flight line is located outside of both the main American compound and the ANA training area (Reference 6).

The FOB Todd was used by U.S. and Italian personnel along with an ANA operations base used for training and mentoring (Reference 7).

SUMMARY: Conditions that may pose a Moderate or greater health risk are summarized in Table 1. Table 2 provides population based risk estimates for identified OEH conditions at FSB Herat and Vicinity. As indicated in the detailed sections that follow Table 2, controls established to reduce health risk were factored into this assessment. In some cases, e.g., ambient air, specific controls are noted, but not routinely available/feasible.
Table 1: Summary of Occupational and Environmental Conditions with MODERATE or Greater Health Risk

<table>
<thead>
<tr>
<th>Short-term health risks & medical implications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following hazards may be associated with potential acute health effects in some personnel during deployment at FSB Herat and Vicinity, Afghanistan includes: COP Metro; Qadis; and Ricketts; Camps Arena/FSB Herat (Gilbert); Bazaar Khona (COP Reaper, Bashar Khona); Zafar; Chasma-e-Dozakh; Chapchat; Cougar; Darrah I Bum; Delorean; Henderson; Inji; Islam Qala; Lawton; Qal-e-Naw; Parmakan; Robat Sangi (Robat); Sanowghan (Safe Home); Shouz; Camp Thomas; Forward Operating Bases FOB Adraskan; Shindand (Shaf, Napier); Stone; and Todd / BMG (Bala Morghab) Herat PRT); and Patrol Base (PB) Red Leg:</td>
</tr>
<tr>
<td>Inhalable coarse particulate matter less than 10 micrometers in diameter (PM10) from environmental dust; food/waterborne diseases (e.g., bacterial diarrhea, hepatitis A, typhoid/paratyphoid fever, diarrhea-cholera, diarrhea-protozoal, brucellosis, hepatitis E); other endemic diseases (malaria, cutaneous leishmaniasis (acute), Crimean-Congo hemorrhagic fever, sandfly fever, scrub typhus (mite-borne), leptospirosis, Tuberculosis (TB), rabies, anthrax, Q fever); and heat stress. For food/waterborne diseases (e.g., bacterial diarrhea, hepatitis A, typhoid/paratyphoid fever, diarrhea-cholera, diarrhea-protozoal, brucellosis, hepatitis E), if ingesting local food and water, the health effects can temporarily incapacitate personnel (diarrhea) or result in prolonged illness (hepatitis A, typhoid/paratyphoid fever, brucellosis, hepatitis E). Risks from food/waterborne diseases may have been reduced with preventive medicine controls and mitigation, which includes hepatitis A and typhoid fever vaccinations and only drinking from approved water sources in accordance with standing CENTCOM policy. For other vector-borne endemic diseases (malaria, cutaneous leishmaniasis (acute), Crimean-Congo hemorrhagic fever, sandfly fever, scrub typhus (mite-borne), these diseases may constitute a significant risk due to exposure to biting vectors; risk reduced to ‘Low’ by proper wear of the treated uniform, application of repellant to exposed skin, bed net use, and appropriate chemoprophylaxis, as well as minimizing areas of standing water and other vector-breeding areas. For water contact diseases (leptospirosis) activities involving extensive contact with surface water increase risk. For respiratory diseases (TB), personnel in close-quarter conditions could have been at risk for person-to-person spread. Animal contact diseases (rabies, anthrax, Q fever), pose year-round risk. For heat stress, risk can be greater during months of April through October, and greater for susceptible persons including those older than 45, of low fitness level, unacclimatized, or with underlying medical conditions, and those under operational constraints (equipment, PPE, vehicles). Risks from heat stress may have been reduced with preventive medicine controls, work-rest cycles, proper hydration and nutrition, and mitigation.</td>
</tr>
</tbody>
</table>

Air quality: For inhalable coarse particulate matter less than 10 micrometers in diameter (PM10) from environmental dust, the PM10 overall short-term health risk was ‘Low to Moderate.’ For inhalable fine particulate matter less than 2.5 micrometers in diameter (PM2.5) from environmental dust, the PM2.5 overall short-term health risk was ‘Low.’ However, the entire FSB Herat and vicinity area is an arid and dust-prone desert environment, also subject to vehicle traffic. Consequently, exposures to PM10 and PM2.5 may vary, as conditions may vary, and may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel while at this site, particularly exposures to high levels of dust such as during high winds or dust storms. For PM10 and PM2.5, certain subgroups of the deployed forces (e.g., those with pre-existing asthma/cardio-pulmonary conditions) are at greatest risk of developing notable health effects. Burn pits were reported in operation at FSB Herat and vicinity. The PM10 and the PM2.5 overall short-term health risks specifically for burn pits were not evaluated due to ‘insufficient environmental samples collected near burn pits provided for analysis’—see Section 10.7. Where burn pits exist, exposures may vary, and exposures to high levels of PM10 and PM2.5 from smoke may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel and certain subgroups. Although most short-term health effects from exposure to particulate matter and burn pit smoke should have resolved post-deployment, providers should be prepared to consider the relationship between deployment exposures and current complaints. Some individuals may have sought treatment for acute respiratory irritation. Personnel who reported with symptoms or required treatment while at site(s) with burn pit activity should have exposure and treatment noted in medical record (e.g., electronic medical record and/or on a Standard Chronological Record of Medical Care). |

<table>
<thead>
<tr>
<th>Long-term health risks & medical implications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following hazards may be associated with potential chronic health effects in some personnel during deployment at FSB Herat and Vicinity, Afghanistan that includes: COP Metro; Qadis; and Ricketts; Camps Arena/FSB Herat (Gilbert); Bazaar Khona (COP Reaper, Bashar Khona); Zafar; Chasma-e-Dozakh; Chapchat; Cougar; Darrah I Bum; Delorean; Henderson; Inji; Islam Qala; Lawton; Qal-e-Naw; Parmakan; Robat Sangi (Robat); Sanowghan (Safe Home); Shouz; Camp Thomas; Forward Operating Bases FOB Adraskan; Shindand (Shaf, Napier); Stone; and Todd / BMG (Bala Morghab) Herat PRT); and Patrol Base (PB) Red Leg:</td>
</tr>
</tbody>
</table>
| Air quality: For inhalable fine particulate matter less than 2.5 micrometers in diameter (PM2.5) from environmental dust, the overall long-term health risk was ‘Low.’ Inhalable coarse particulate matter less than 10 micrometers in diameter (PM10) from environmental dust was not evaluated for long-term health risk due to no available health guidelines. However, the entire FSB Herat and vicinity area is an arid and dust-prone desert environment, also subject to vehicle traffic, and conditions may have varied. Burn pits were reported in operation at FSB Herat and vicinity. The PM10 and the PM2.5 overall long-term health risks were not evaluated at the burn pit locations at FSB Herat and vicinity due to ‘insufficient
environmental samples collected near burn pits provided for analysis and due to no available health guidelines for PM10 - see Section 10.7. However, burn pit exposures may vary, as conditions may have varied. For inhalational exposure to high levels of dust containing PM\(_{10}\) and PM\(_{2.5}\), such as during high winds or dust storms, and for exposures to burn pit smoke, it is considered possible that some otherwise healthy personnel, who were exposed for a long-term period to dust and particulate matter, could develop certain health conditions (e.g., reduced lung function, cardiopulmonary disease). Personnel with a history of asthma or cardiopulmonary disease could potentially be more likely to develop such chronic health conditions. While the dust and particulate matter exposures and exposures to burn pits are acknowledged, at this time there were no specific recommended, post-deployment medical surveillance evaluations or treatments. Providers should still consider overall individual health status (e.g., any underlying conditions/susceptibilities) and any potential unique individual exposures (such as burn pits/barrels, incinerators, occupational or specific personal dosimeter data) when assessing individual concerns. Certain individuals may need to be followed/evaluated for specific occupational exposures/injuries (e.g., annual audiograms as part of the medical surveillance for those enrolled in the Hearing Conservation Program; and personnel covered by Respiratory Protection Program and/or Hazardous Waste/Emergency Responders Medical Surveillance).
Table 2. Population-Based Health Risk Estimates - Herat and Vicinity, Afghanistan includes: COPs Metro; Qadis; and Ricketts; Camps Arena/FSB Herat (Gilbert); Bazaar Khona (COP Reaper, Bashar Khona); Zafar; Chasma-e-Dozakh; Chapchal; Cougar; Darrah I Bum; Delorean; Henderson; Injil; Islam Qala; Lawton; Qal-e-Naw; Parmakan; Robot Sangi (Robot); Sanowghan (Safe Home); Shouz; Thomas; FOBs Adraskan; Shindand AB (Shaf, Napier); Stone; and Todd / BMG (Bala Morghab) Herat PRT); and PB Red Leg 1, 2

<table>
<thead>
<tr>
<th>Source of Identified Health Risk</th>
<th>Unmitigated Health Risk Estimate</th>
<th>Control Measures Implemented</th>
<th>Residual Health Risk Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter less than 10 micrometers in diameter (PM10)</td>
<td>Short-term: Low to Moderate, Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases).</td>
<td>Limiting strenuous physical activities when air quality is especially poor; and actions such as closing tent flaps, windows, and doors.</td>
<td>Short-term: Low to Moderate, Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases).</td>
</tr>
<tr>
<td>Long-term: No health guidelines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter less than 2.5 micrometers in diameter (PM2.5)</td>
<td>Short-term: Low, A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.</td>
<td>Limiting strenuous physical activities when air quality is especially poor; and actions such as closing tent flaps, windows, and doors.</td>
<td>Short-term: Low, A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.</td>
</tr>
<tr>
<td>Long-term: Low. A small percentage of personnel may be at increased risk for developing chronic conditions. Particularly those more susceptible to acute effects (e.g., those with asthma/existing respiratory diseases).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDEMIC DISEASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food borne/Waterborne (e.g., diarrea-bacteriological)</td>
<td>Short-term: Variable; High (bacterial diarrhea, hepatitis A, typhoid fever) to Moderate (diarrhea-cholera, diarrhea-protozoal, brucellosis, hepatitis E) to Low (polio) if ingesting local food/water, the health effects can temporarily incapacitate personnel (diarrhea) or result in prolonged illness (hepatitis A, Typhoid fever, hepatitis E, brucellosis).</td>
<td>Preventive measures include Hepatitis A and Typhoid fever vaccination and consumption of food and water only from approved sources.</td>
<td>Short-term: Low to none</td>
</tr>
<tr>
<td>Long-term: none identified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropod Vector Borne</td>
<td>Short-term: Variable; High for malaria, Moderate for leishmaniasis - cutaneous (acute), Crimean-Congo hemorrhagic fever, sandfly fever, typhus-miteborne; and Low for, the plague and West Nile fever.</td>
<td>Preventive measures include proper wear of treated uniform, application of repellent to exposed skin, bed net use, minimizing areas of standing water and appropriate chemoprophylaxis.</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td>Long-term: Low for Leishmaniasis-visceral infection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-Contact (e.g. wading, swimming)</td>
<td>Short-term: Moderate for leptospirosis</td>
<td>Recreational swimming in surface waters not likely in this area of Afghanistan during this time period.</td>
<td>Short-term: Low for leptospirosis.</td>
</tr>
<tr>
<td>Long-term: No data available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of Identified Health Risk³</td>
<td>Unmitigated Health Risk Estimate⁴</td>
<td>Control Measures Implemented</td>
<td>Residual Health Risk Estimate⁴</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Short-term: Variable; Moderate for tuberculosis (TB) to Low for meningococcal meningitis. Long-term: No data available</td>
<td>Providing adequate living and work space; medical screening; vaccination.</td>
<td>Short-term: Low Long-term: No data available</td>
</tr>
<tr>
<td>Animal Contact</td>
<td>Short-term: Variable; Moderate for rabies, anthrax, Q-fever to Low for H5N1 avian influenza. Long-term: Low (Rabies)</td>
<td>Prohibiting contact, adoption, or feeding of feral animals IAW U.S. Central Command (CENTCOM) General Order (GO) 1B. Risks are further reduced in the event of assessed contact by prompt post-exposure rabies prophylaxis IAW The Center for Disease Control’s (CDC) Advisory Committee on Immunization Practices guidance.</td>
<td>Short-term: No data available Long-term: No data available</td>
</tr>
<tr>
<td>VENOMOUS ANIMAL/INSECTS</td>
<td>Snakes, scorpions, and spiders Short-term: Low; If encountered, effects of venom vary with species from mild localized swelling (e.g. Latrodectus dahlia) to potentially lethal effects (e.g. Gloydius halys). Long-term: No data available</td>
<td>Risk reduced by avoiding contact, proper wear of uniform (especially footwear), and proper and timely treatment.</td>
<td>Short-term: Low; If encountered, effects of venom vary with species from mild localized swelling (e.g. Latrodectus dahlia) to potentially lethal effects (e.g. Gloydius halys). Long-term: No data available</td>
</tr>
<tr>
<td>HEAT/COLD STRESS</td>
<td>Heat Short-term: Variable; Risk of heat injury is based on temperatures alone Extremely High from May - September, Moderate in April and October, and Low from November – March. Long-term: Low, The long-term risk was Low. However, the risk may be greater to certain susceptible persons—those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions.</td>
<td>Work-rest cycles, proper hydration and nutrition, and Wet Bulb Globe Temperature (WBGT) monitoring.</td>
<td>Short-term: Variable; Risk of heat injury is Extremely High from May - September, Moderate in April and October, and Low from November – March. Long-term: Low, The long-term risk is Low. However, the risk may be greater to certain susceptible persons—those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions.</td>
</tr>
<tr>
<td></td>
<td>Cold Short-term: Low risk of cold stress/injury. Long-term: Low; Long-term health implications from cold injuries are rare but can occur, especially from more serious injuries such as frost bite.</td>
<td>Risks from cold stress reduced with protective measures such as use of the buddy system, limiting exposure during cold weather, proper hydration and nutrition, and proper wear of issued protective clothing.</td>
<td>Short-term: Low risk of cold stress/injury. Long-term: Low; Long-term health implications from cold injuries are rare but can occur, especially from more serious injuries such as frost bite.</td>
</tr>
<tr>
<td></td>
<td>Unique Incidents/Concerns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of Identified Health Risk</td>
<td>Unmitigated Health Risk Estimate</td>
<td>Control Measures Implemented</td>
<td>Residual Health Risk Estimate</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| Burn Pits PM$_{10}$ | Short-term: Insufficient data to characterize risk. Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/pre-existing respiratory diseases).
Long-term: No health guidelines | Control measures may have included locating burn pits downwind of prevailing winds, increased distance from living and working areas when possible, and improved waste segregation and management techniques | Short-term: Insufficient data to characterize risk. Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/pre-existing respiratory diseases).
Long-term: No health guidelines |
| Burn Pits PM$_{2.5}$ | Short-term: Insufficient data to characterize risk. A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.
Long-term: Insufficient data to characterize risk. A small percentage of personnel may be at increased risk for developing chronic conditions, particularly those more susceptible to acute effects (e.g., those with asthma/pre-existing respiratory diseases). | Control measures may have included locating burn pits downwind of prevailing winds, increased distance from living and working areas when possible, and improved waste segregation and management techniques | Short-term: Insufficient data to characterize risk. A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.
Long-term: Insufficient data to characterize risk. A small percentage of personnel may be at increased risk for developing chronic conditions, particularly those more susceptible to acute effects (e.g., those with asthma/pre-existing respiratory diseases). |

1This Summary Table provides a qualitative estimate of population-based short- and long-term health risks associated with the occupational environment conditions at FSB Herat and Vicinity. It does not represent an individual exposure profile. Actual individual exposures and health effects depend on many variables. For example, while a chemical may have been present in the environment, if a person did not inhale, ingest, or contact a specific dose of the chemical for adequate duration and frequency, then there may have been no health risk. Alternatively, a person at a specific location may have experienced a unique exposure which could result in a significant individual exposure. Any such person seeking medical care should have their specific exposure documented in an SF600.

2This assessment is based on specific environmental sampling data and reports obtained from 9 December 2006 through 31 December 2015. Sampling locations are assumed to be representative of exposure points for the camp population but may not reflect all the fluctuations in environmental quality or capture unique exposure incidents.

3This Summary Table is organized by major categories of identified sources of health risk. It only lists those sub-categories specifically identified and addressed at FSB Herat and Vicinity. The health risks are presented as Low, Moderate, High or Extremely High for both acute and chronic health effects. The health risk level is based on an assessment of both the potential severity of the health effects that could be caused and probability of the exposure that would produce such health effects. Details can be obtained from the Army Public Health Center (Provisional) [APHC (Prov)]. Where applicable, “None Identified” is used when though a potential exposure is identified, and no health risks of either a specific acute or chronic health effects are determined. More detailed descriptions of OEH exposures that are evaluated but determined to pose no health risk are discussed in the following sections of this report.

4Health risks in this Summary Table are based on quantitative surveillance thresholds (e.g. endemic disease rates; host/vector/pathogen surveillance) or screening levels, e.g., Military Exposure Guidelines (MEGs) for chemicals. Some previous assessment reports may provide slightly inconsistent health risk estimates because quantitative criteria such as MEGs may have changed since the samples were originally evaluated and/or because this assessment makes use of all historic site data while previous reports may have only been based on a select few samples.
1 Discussion of Health Risks at FSB Herat and Vicinity, Afghanistan by Source

The following sections provide additional information about the OEH conditions summarized above. All risk assessments were performed using the methodology described in the U. S. Army Public Health Command Technical Guide 230, Environmental Health Risk Assessment and Chemical Exposure Guidelines for Deployed Military Personnel (Reference 8). All OEH risk estimates represent residual risk after accounting for preventive controls in place. Occupational exposures and exposures to endemic diseases are greatly reduced by preventive measures. For environmental exposures related to airborne dust, there are limited preventive measures available, and available measures have little efficacy in reducing exposure to ambient conditions.

2 Air

2.1 Site-Specific Sources Identified

The FSB Herat and vicinity is situated in a dusty semi-arid desert environment. Inhalational exposure to high levels of dust and particulate matter, such as during high winds or dust storms, may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel. Additionally, certain subgroups of the deployed forces (e.g., those with pre-existing asthma/cardio pulmonary conditions) are at greatest risk of developing notable health effects.

2.2 Particulate matter

Particulate matter (PM) is a complex mixture of extremely small particles suspended in the air. The PM includes solid particles and liquid droplets emitted directly into the air by sources such as: power plants, motor vehicles, aircraft, generators, construction activities, fires, and natural windblown dust. The PM can include sand, soil, metals, volatile organic compounds (VOC), allergens, and other compounds such as nitrates or sulfates that are formed by condensation or transformation of combustion exhaust. The PM composition and particle size vary considerably depending on the source. Generally, PM of health concern is divided into two fractions: PM$_{10}$, which includes coarse particles with a diameter of 10 micrometers or less, and fine particles less than 2.5 micrometers (PM$_{2.5}$), which can reach the deepest regions of the lungs when inhaled. Exposure to excessive PM is linked to a variety of potential health effects.

2.3 Particulate matter, less than10 micrometers (PM$_{10}$)

2.3.1 Exposure Guidelines:

<table>
<thead>
<tr>
<th>PM$_{10}$ Exposures</th>
<th>Long-term PM$_{10}$ MEG (μg/m3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term (24-hour) PM$_{10}$ (micrograms per cubic meter, μg/m3):</td>
<td>Not defined and not available.</td>
</tr>
<tr>
<td>• Negligible MEG = 250</td>
<td></td>
</tr>
<tr>
<td>• Marginal MEG = 420</td>
<td></td>
</tr>
<tr>
<td>• Critical MEG = 600</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 Sample data/Notes:

A total of 87 valid PM$_{10}$ air samples were collected at FSB Herat and Vicinity from 9 December 2006 through 2 January 2014. The range of 24-hour PM$_{10}$ concentrations was 4 μg/m3 – 750 μg/m3 with an average concentration of 132 μg/m3.
2.3.3 Short-term health risks:

Low to Moderate: The short-term risk assessment was Low for typical PM\(_{10}\) concentrations, and Moderate for the peak PM\(_{10}\) concentration at FSB Herat and vicinity. A Low health risk suggests little to no in-theater medical resources anticipated for protection and treatment of personnel (Reference 8, Table 3-2), whereas a Moderate risk for peak PM\(_{10}\) sample concentrations suggests limited in-theater medical countermeasures and resources may be required for personnel. Daily average PM\(_{10}\) risk levels at FSB Herat and vicinity show High risk 2\%, Low risk 8\%, and no hazard 90\% of the time. Confidence in the short-term PM\(_{10}\) health risk assessment was low (Reference 10, Table 3-6).

The hazard severity for average PM\(_{10}\) concentrations in samples was below the negligible hazard severity level. For the highest observed PM\(_{10}\) concentration, the short-term hazard severity was critical. During peak exposures at the critical hazard severity level (> 600 μg/m\(^3\)), most if not all personnel experience very notable eye, nose, and throat irritation and respiratory effects. Visual acuity is impaired, as is overall aerobic capacity (Reference 4, Table 3-11). Confidence in short-term PM\(_{10}\) risk assessment was low (Reference 10, Table 3-6).

2.3.4 Long-term health risk:

Not Evaluated-no available health guidelines. The U.S. Environmental Protection Agency (EPA) has retracted its long-term standard (National Ambient Air Quality Standards, NAAQS) for PM\(_{10}\) due to an inability to clearly link chronic health effects with chronic PM\(_{10}\) exposure levels.

2.4 Particulate Matter, less than 2.5 micrometers (PM\(_{2.5}\))

2.4.1 Exposure Guidelines:

Short-term (24-hour) PM\(_{2.5}\) (μg/m\(^3\)):
- Negligible MEG = 65
- Marginal MEG = 250
- Critical MEG = 500

Long-term (1 year) PM\(_{2.5}\) (μg/m\(^3\)):
- Negligible MEG = 15
- Marginal MEG = 65

2.4.2 Sample data/Notes:

PM\(_{2.5}\): A total of 78 valid PM\(_{2.5}\) air samples were collected from 10 Dec 2006 to 2 August 2015. The range of 24-hour PM\(_{2.5}\) concentrations was 3 μg/m\(^3\) – 333 μg/m\(^3\) with an average concentration of 43 μg/m\(^3\).

2.4.3 Short-term health risks:

Low: The short-term PM\(_{2.5}\) health risk assessment is Low for average and peak PM\(_{2.5}\) sample concentrations at FSB Herat and vicinity. A Low health risk suggests little to no in-theater medical resources anticipated for protection and treatment of personnel (TG 230 Table 3-2). Daily average health risk levels for PM\(_{2.5}\) at FSB Herat and vicinity show Low risk 11\%, and the no hazard 89\% of the time. Confidence in the short-term PM\(_{2.5}\) health risk assessment was low (Reference 8, Table 3-6).

For the highest observed PM\(_{2.5}\) exposure, the hazard severity was negligible (65 μg/m\(^3\) to 250 μg/m\(^3\)). During peak exposures at the negligible hazard severity level, a few personnel may experience notable eye, nose, and throat irritation; most personnel will experience only mild effects. (Reference 8, Table 3-10).
Long-term health risks:

Low: The long-term health risk assessment is Low for FSB Herat and vicinity based on average PM$_{2.5}$ concentration, and the likelihood of exposure at negligible hazard severity level. A Low health risk level suggests that no specific medical action is required for long-term exposure to PM$_{2.5}$ (Reference 8, Table 3-3). Confidence in the long-term PM$_{2.5}$ health risk assessment is low (Reference 10, Table 3-6).

The hazard severity was negligible ($15 \mu g/m^3$ to $65 \mu g/m^3$) at FSB Herat and vicinity for average PM$_{2.5}$ sample concentrations. With repeated exposures above the negligible hazard severity threshold, it is considered possible that a small percentage of personnel may have increased risk for developing chronic conditions, such as reduced lung function or exacerbated chronic bronchitis, COPD, asthma, atherosclerosis, or other cardiopulmonary diseases. Personnel with a history of asthma or cardiopulmonary disease are considered to be at particular risk (Reference 8, Table 3-11).

2.5 Airborne Metals

2.5.1 Exposure Guidelines:

None of the detected metals exceeded the 1-year negligible MEG.

2.5.2 Sample data/Notes:

FOB Adraskan:
- PM$_{10}$: A total of 10 valid airborne metal PM$_{10}$ samples were collected 22 Jan 2010 to 21 July 2012. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
- PM$_{2.5}$: A total of five valid airborne metal PM$_{2.5}$ air samples were collected from 23 Dec 2009 to 2 Jan 2014. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

Camp Arena:
- PM$_{10}$: A total of 11 valid airborne metal PM$_{10}$ samples were collected from 19 Jan 2010 to 20 July 2012. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
- PM$_{2.5}$: A total of 19 valid airborne metal PM$_{2.5}$ air samples were collected from 23 Dec 2009 to 2 August 2015. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

Camp Henderson:
- PM$_{10}$: A single valid airborne metal PM$_{10}$ sample was collected on 25 Nov 2013. No metals detected had a peak concentration greater than the 1 year negligible MEG.

Camp Islam Qala:
- PM$_{2.5}$: A single valid airborne metal PM$_{2.5}$ air sample was collected on 2 May 2013. No metals detected had a peak concentration greater than the 1 year negligible MEG.

Camp Reaper:
- PM$_{10}$: A total of two valid airborne metal PM$_{10}$ samples were collected on 5 July and 6 July 2011. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
Camp Rickets:
- PM$_{10}$: A single valid airborne metal PM$_{10}$ sample was collected on 8 May 2011. No metals detected had a peak concentration greater than the 1 year negligible MEG.

FOB Shindand AB:
- PM$_{10}$: A total of 40 valid airborne metal PM$_{10}$ samples were collected from 19 Mar 2009 to 21 Dec 2013. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
- PM$_{2.5}$: A total of 24 valid airborne metal PM$_{2.5}$ samples were collected from 9 Jan 2010 to 16 Oct 2014. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

FOB Stone:
- PM$_{10}$: A total of 19 valid airborne metal PM$_{10}$ samples were collected from 9 Dec 2006 to 20 Aug 2012. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
- PM$_{2.5}$: A total of 20 valid airborne metal PM$_{2.5}$ air samples were collected from 10 Dec 2006 to 25 Aug 2013. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

Camp Thomas:
- PM$_{10}$: A single valid airborne metal PM$_{10}$ air sample was collected on 27 November 2013. No metals detected had a peak concentration greater than the 1 year negligible MEG.

FOB Todd:
- PM$_{10}$: A total of five valid airborne metal PM$_{10}$ air sample were collected from 9 Mar 2010 to 12 Mar 2010. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.
- PM$_{2.5}$: A total of 9 valid airborne metal PM$_{2.5}$ air samples were collected from 9 Mar 2010 to 6 Jul 2012. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

2.5.3 Short and long-term health risks:

None identified based on the available sampling data.

2.6 Volatile Organic Compounds (VOC)

2.6.1 Exposure Guidelines:

1,2-Dibromo-3-chloropropane:
- Short Term (1-hour) VOC (μg/m3):
 - Negligible MEG = 750
 - Marginal MEG = 5000
 - Critical MEG = 150,000
- Long-term (1 year) VOC (μg/m3):
 - Negligible MEG = 7.99 E-7

2.6.2 Sample data/Notes:

FOB Adraskan: A single valid VOC sample was collected on 21 July 2012. No VOCs detected in the sample had a peak concentration greater than the 1 year negligible MEG.
Camp Arena: A total of two valid VOC samples were collected on 30 July 2012 and 26 November 2013. No VOCs detected in samples had a peak concentration greater than the 1 year negligible MEG.

Camp Islam Qala: A single valid VOC sample was collected on 2 May 2013. No VOCs detected in the sample had a peak concentration greater than the 1 year negligible MEG.

FOB Shindand AB: A single valid VOC sample was collected on 22 December 2013. 1,2-Dibromo-3-chloropropane was detected in the single sample (0.97 ug/m³) with a concentration greater than the 1 year negligible MEG of 7.99 E-7 ug/m³.

FOB Stone: A total of four valid VOC samples were collected from 14 December 2006 to 15 October 2013. No VOCs detected in samples had a peak concentration greater than the 1 year negligible MEG.

FOB Todd: A total of three valid VOC samples were collected from 11 March 2010 to 7 July 2012. No VOCs detected in samples had a peak concentration greater than the 1 year negligible MEG.

2.6.3 Short and long-term health risks:

None identified based on the available sampling data.

3 Soil

3.1 Site-Specific Sources Identified

3.2 Sample data/Notes:

The primary soil contamination exposure pathways are dermal contact and dust inhalation. Typical parameters analyzed for included semi volatile organic compounds (SVOCs), heavy metals, polychlorinated biphenyls (PCBs), pesticides, herbicides. If the contaminant was known or suspected, other parameters may have been analyzed for (i.e., total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) near fuel spills). For the risk assessment, personnel are assumed to remain at this location for 6 months to 1 year.

FOB Adraskan: A total of nine valid surface soil samples were collected from 8 April 2007 to 21 July 2012 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled areas was > 75% for one sample, 10 < 25% for six samples, and < 10% for two samples. No chemicals were detected above the 1 year negligible MEG.

Camp Arena: A total of five valid surface soil samples were collected from 31 July 2012 to 26 November 2013 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled areas was > 75% for one sample, and 50 < 75% for four samples. No chemicals were detected above the 1 year negligible MEG.

COP Reaper: A single valid surface soil sample was collected on 5 July 2011 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled area was >75%. No chemicals were detected above the 1 year negligible MEG.

FOB Shindand AB: A total of 10 valid surface soil samples were collected from 13 January 2010 to 17 December 2013 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled areas was > 75% for seven samples and 25 < 50% for three samples. No chemicals were detected above the 1 year negligible MEG.
FOB Stone: A total of 22 valid surface soil samples were collected from 30 April 2008 to 16 October 2013 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled areas was > 75% for 21 samples and 50 < 75% for one sample. No chemicals were detected above the 1 year negligible MEG.

FOB Todd: A total of 10 valid surface soil samples were collected from 13 March 2010 to 7 July 2012 to assess OEH risk to deployed personnel. The percent of the population exposed to soil and associated dust in the sampled areas was > 75% for seven samples, 50 < 75% for two samples, and 25 < 50% for one sample. No chemicals were detected above the 1 year negligible MEG.

3.3 Short-term health risk:

Not an identified source of health risk. Currently, sampling data for soil are not evaluated for short term (acute) health risks.

3.4 Long-term health risk:

None identified based on available sample data. No parameters exceeded 1-year Negligible MEGs.

4 Water

In order to assess the health risk to U.S. personnel from exposure to water in theater, the Army Public Health Center (Provisional); APHC (Prov) identified the most probable exposure pathways. These are based on the administrative information provided on the field data sheets submitted with the samples taken over the time period being evaluated. It is assumed that 100% of all U.S. personnel at FSB Herat and vicinity will be directly exposed to reverse osmosis water purification unit (ROWPU) treated, disinfected fresh non-potable water, and untreated well water since this classification of water is primarily used for personal hygiene, showering, cooking, and for use at vehicle wash racks. Field data sheets indicate that bottled water is the only approved source of drinking water.

4.1 Drinking Water: Bottled, Treated or Untreated Water

4.1.1 Site-Specific Sources Identified

FOB Adraskan: Treated water for personal hygiene, showers, latrine, vehicle washing, and DFAC was supplied from one main well located in a nearby village. The contractor has an in-line chlorinator as well as a sand filter to treat the water (Reference 9). Bottled water brands used for primary drinking source include Christal® and Kinley® (Reference 9).

FSB Herat / Camp Arena: Non-potable water was supplied to the Spanish and Italian Camps from a well on the Spanish side of Camp Arena. Water was treated by a chlorine feed system and held in eight storage tanks in the Italian camp and four storage tanks in the Spanish Camp (Reference 5). Bottled water (e.g., Nestle®) was the only source of drinking water.

COP Reaper: Non-potable water is taken from a river nearby. A 400 gallon water buffalo was taken to the river and filled up. Once back in the COP, the medic treats the water with calcium hypochlorite. Soldiers at the COP only take showers once or twice per week, due to water shortages. The water buffalo is filled up once a week and is used for personal hygiene, laundry, and sanitation (Reference 10).
FOB Qual-E-Naw: Bottled water brands used for primary drinking source include Alain®, Dibba®, and Nestle® (Reference 4).

FOB Shindand AB: Water was piped into a one million gallon tank from two different wells. The water was trucked to the blivets that are located behind the DFAC and the showers. This water was chlorinated after in the water truck (Reference 6). Bottled water brands used for primary drinking source include Christal® and Kinley® (Reference 6).

FOB Stone: Water was supplied from one main well on FOB Stone. DynCorp was the contractor that operated and oversaw the water operation. Non-potable water was supplied throughout the camp through a constructed distribution system for showers and personal hygiene. A ROWPU system supplied potable water for the DFAC for cooking (Reference 11). Bottled water brands used for primary drinking source include Christal®, Oasis®, Hayat®, Dibba®, Aqua Gulf®, and Kinley® (Reference 12).

FOB Todd: Bottled water brands used for primary drinking source include Nestle®, and Primavera® (Reference 7).

4.1.2 Sample data/Notes:

To assess the potential for adverse health effects to troops, the following assumptions were made about dose and duration: A conservative (protective) assumption was that personnel routinely ingested 5 L/day of bottled water for up to 365 days (1-year). It was further assumed that control measures were not used.

FOB Adraskan:
- A single ROWPU water sample collected on 21 July 2012 was evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

Camp Arena:
- A total of five treated water samples collected from 11 April 2011 to 26 November 2013 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

Camp Islam Qala:
- A single ROWPU water sample collected on 4 May 2013 was evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

FOB Shindand AB:
- A total of eight treated water samples collected from 1 April 2009 to 10 July 2014 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

FOB Stone:
- A total of three bottled water samples collected on 29 May 2010 and 1 October 2010 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.
- A total of 10 ROWPU water samples collected from 16 December 2006 and 9 June 2012 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.
4.1.3 Short-term and long-term health risk:

None identified based on available sample data. All detected chemicals from collected samples were below the short and long-term Negligible MEGs.

4.2 Non-Drinking Water: Untreated

4.2.1 Site-Specific Sources Identified

Although the primary route of exposure for most microorganisms is ingestion of contaminated water, dermal exposure to some microorganisms, chemicals, and biologicals may also cause adverse health effects. Complete exposure pathways would include drinking, brushing teeth, personal hygiene, cooking, providing medical and dental care using a contaminated water supply or during dermal contact at vehicle or aircraft wash racks.

4.2.2 Sample data/Notes:

To assess the potential for adverse health effects to troops the following assumptions were made about dose and duration: All U.S. personnel at this location were expected to remain at this site for approximately 1 year. A conservative (protective) assumption is that personnel routinely consumed less than 5 liters per day (L/day) of non-drinking water for up to 365 days (1 year). It is further assumed that control measures and/or personal protective equipment were not used.

FOB Adraskan:
- A total of three untreated water samples collected from 27 May 2008 to 22 July 2012 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

Camp Arena:
- A total of three untreated water sample collected from 24 Dec 2009 to 26 November 2013 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

Camp Chapchal:
- A single untreated water sample collected on 10 Dec 2011 was evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

Camp Islam Qala:
- A single untreated water sample collected on 4 May 2013 was evaluated for this health risk assessment. No chemicals were detected at levels above the short or long-term MEGs.

Camp Lawton:
- A single untreated water sample collected on 4 January 2011 was evaluated for this health risk assessment. No chemicals were detected at levels above the short or long-term MEGs.

FOB Shindand AB:
- A total of 19 untreated water samples collected from 17 August 2007 to 10 July 2014 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.
FOB Stone:
- A total of nine untreated water samples collected from 31 October 2007 to 16 October 2013 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs. FOB Todd: A total of six untreated water samples collected from 27 September 2009 to 7 July 2012 were evaluated for this health risk assessment. No chemicals were detected at levels above the short- or long-term MEGs.

4.2.3 Short and long-term health risks:

None identified based on available sample data. All detected chemicals from collected samples were below the short and long-term Negligible MEGs.

5 Military Unique

5.1 Chemical Biological, Radiological Nuclear (CBRN) Weapons

No specific hazard sources were documented in the Defense Occupational and Environmental Health Readiness System (DOEHRs) or the Military Exposure Surveillance Library (MESL) from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).

5.2 Depleted Uranium (DU)

No specific hazard sources were documented in the DOEHRs or MESL from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).

5.3 Ionizing Radiation

No specific hazard sources were documented in the DOEHRs or MESL from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).

5.4 Non-Ionizing Radiation

No specific hazard sources were documented in the DOEHRs or MESL from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).

6 Endemic Diseases

This document lists the endemic diseases reported in the region, its specific health risks and severity and general health information about the diseases. CENTCOM Modification (MOD) 12 (Reference 14) lists deployment requirements, to include immunizations and chemoprophylaxis, in effect during the timeframe of this POEMS.

6.1 Food borne and Waterborne Diseases

Food borne and waterborne diseases in the area are transmitted through the consumption of local food and water. Local unapproved food and water sources (including ice) are heavily contaminated with pathogenic bacteria, parasites, and viruses to which most U.S. Service Members have little or no natural immunity. Effective host nation disease surveillance does not exist within the country. Only a small fraction of diseases are identified or reported in host nation personnel. Diarrheal diseases are expected to temporarily incapacitate a very high percentage of U.S. personnel within days if local food, water, or ice is consumed. Hepatitis A and typhoid fever infections typically cause prolonged illness in a smaller percentage of unvaccinated personnel. Vaccinations are required for DoD personnel and
contractors. In addition, although not specifically assessed in this document, significant outbreaks of viral gastroenteritis (e.g., norovirus) and food poisoning (e.g., *Bacillus cereus*, *Clostridium perfringens*, *Staphylococcus*) may occur. Key disease risks are summarized below:

Mitigation strategies were in place and included consuming food and water from approved sources, vaccinations (when available), frequent hand washing and general sanitation practices.

6.1.1 Diarrheal diseases (bacteriological)

High, mitigated to Low: Diarrheal diseases are expected to temporarily incapacitate a very high percentage of personnel (potentially over 50% per month) within days if local food, water, or ice is consumed. Field conditions (including lack of hand washing and primitive sanitation) may facilitate person-to-person spread and epidemics. Typically mild disease treated in outpatient setting; recovery and return to duty in less than 72 hours with appropriate therapy. A small proportion of infections may require greater than 72 hours limited duty, or hospitalization.

6.1.2 Hepatitis A, typhoid/paratyphoid fever, and diarrhea/protozoal

High, mitigated to Low: Unmitigated health risk to U.S. personnel is high year round for hepatitis A and typhoid/paratyphoid fever, and Moderate for diarrhea/protozoal. Mitigation was in place to reduce the risks to low. Hepatitis A, typhoid/paratyphoid fever, and diarrhea/protozoal disease may cause prolonged illness in a small percentage of personnel (less than 1% per month). Although much rarer, other potential diseases in this area that are also considered a Moderate risk include: hepatitis E, diarrhea-cholera, and brucellosis.

6.1.3 Polio

Low: Potential health risk to U.S. personnel is Low. Despite a concerted global eradication campaign, poliovirus continues to affect children and adults in Afghanistan, Pakistan and some African countries. Polio is a highly infectious disease that invades the nervous system. The virus is transmitted by person-to-person, typically by hands, food or water contaminated with fecal matter or through direct contact with the infected person’s saliva. An infected person may spread the virus to others immediately before and about 1 to 2 weeks after symptoms appear. The virus can live in an infected person’s feces for many weeks. About 90% of people infected have no symptoms, and about 1% have a very severe illness leading to muscle weakness, difficulty breathing, paralysis, and sometimes death. People who do not have symptoms can still pass the virus to others and make them sick.

6.1.4 Short-term Health Risks:

Low: The overall unmitigated short-term risk associated with food borne and waterborne diseases are considered High (bacterial diarrhea, hepatitis A, typhoid/paratyphoid fever) to Moderate (diarrhea-cholera, diarrhea protozoal, brucellosis, hepatitis E) to Low (polio) if local food or water is consumed. Preventive Medicine measures reduced the risk to Low. Confidence in the health risk estimate is high.

6.1.5 Long-term Health Risks:

None identified based on available data.

6.2 Arthropod Vector-Borne Diseases

During the warmer months, the climate and ecological habitat support populations of arthropod vectors, including mosquitoes, ticks, mites, and sandflies. Significant disease transmission is sustained
countrywide, including urban areas. Malaria, the major vector-borne health risk in Afghanistan, is capable of debilitating a high percentage of personnel for up to a week or more. Mitigation strategies were in place and included proper wear of treated uniforms, application of repellent to exposed skin, and use of bed nets and chemoprophylaxis (when applicable). Additional methods included the use of pesticides, reduction of pest/breeding habitats, and engineering controls.

6.2.1 Malaria

High, mitigated to Low: Potential unmitigated risk to U.S. personnel is High during warmer months (typically April through November) but reduced to low with mitigation measures. Malaria incidents are often associated with the presence of agriculture activity, including irrigation systems and standing water, which provide breeding habitats for vectors. A small number of cases may occur among personnel exposed to mosquito (Anopheles spp.) bites. Malaria incidents may cause debilitating febrile illness typically requiring 1 to 7 days of inpatient care, followed by return to duty. Severe cases may require intensive care or prolonged convalescence.

6.2.2 Leishmaniasis

Moderate, mitigated to Low: The disease risk is Moderate during the warmer months when sandflies are most prevalent, but reduced to low with mitigation measures. Leishmaniasis is transmitted by sandflies. There are two forms of the disease; cutaneous (acute form) and visceral (a more latent form of the disease). The leishmaniasis parasites may survive for years in infected individuals and this infection may go unrecognized by physicians in the U.S. when infections become symptomatic years later. Cutaneous infection is unlikely to be debilitating, though lesions may be disfiguring. Visceral leishmaniasis disease can cause severe febrile illness which typically requires hospitalization with convalescence over 7 days.

6.2.3 Crimean-Congo hemorrhagic fever

Moderate, mitigated to Low: Unmitigated risk is moderate, but reduced to low with mitigation measures. Crimean-Congo hemorrhagic fever occurs in rare cases (less than 0.1% per month attack rate in indigenous personnel) and is transmitted by tick bites or occupational contact with blood or secretions from infected animals. The disease typically requires intensive care with fatality rates from 5% to 50%.

6.2.4 Sandfly fever

Moderate, mitigated to Low: Sandfly fever has a Moderate risk with potential disease rates from 1% to 10% per month under worst case conditions. Mitigation measures reduced the risk to low. The disease is transmitted by sandflies and occurs more commonly in children though adults are still at risk. Sandfly fever disease typically resulted in debilitating febrile illness requiring 1 to 7 days of supportive care followed by return to duty.

6.2.5 Plague

Low: Potential health risk to U.S. personnel is Low year round. Bubonic plague typically occurred as sporadic cases among people who come in contact with wild rodents and their fleas during work, hunting, or camping activities. Outbreaks of human plague are rare and typically occur in crowded urban settings associated with large increases in infected commensal rats (Rattus rattus) and their flea populations. Some untreated cases of bubonic plague may develop into secondary pneumonic plague. Respiratory transmission of pneumonic plague is rare but has the potential to cause significant outbreaks. Close contact is usually required for transmission. In situations where respiratory
transmission of plague is suspected, weaponized agent must be considered. Extremely rare cases (less than 0.01% per month attack rate) could occur. Incidence could result in potentially severe illness which may require more than 7 days of hospitalization and convalescence.

6.2.6 Typhus-miteborne (scrub typhus)

Moderate, mitigated to Low: Potential health risk to U.S. personnel is Moderate during warmer months (typically March through November) when vector activity is highest. Mitigation measures reduced the risk to low. Mite-borne typhus is a significant cause of febrile illness in local populations with rural exposures in areas where the disease is endemic. Large outbreaks have occurred when non-indigenous personnel such as military forces enter areas with established local transmission. The disease is transmitted by the larval stage of trombiculid mites (chiggers), which are typically found in areas of grassy or scrubby vegetation, often in areas which have undergone clearing and regrowth. Habitats may include sandy beaches, mountain deserts, cultivated rice fields, and rain forests. Although data are insufficient to assess potential disease rates, attack rates can be very high (over 50%) in groups of personnel exposed to heavily infected "mite islands" in focal areas. The disease can cause debilitating febrile illness typically requiring 1 to 7 days of inpatient care, followed by return to duty.

6.2.7 West Nile fever

Low: West Nile fever is present. The disease is maintained by the bird population and transmitted to humans via mosquito vector. Typically, infections in young, healthy adults were asymptomatic although fever, headache, tiredness, body aches (occasionally with a skin rash on trunk of body), and swollen lymph glands can occurred. This disease is associated with a low risk estimate.

6.2.8 Short-term health risks:

Low: The unmitigated health risk estimate is High for malaria (infection rate of less than 1% per month), Moderate for leishmaniasis-cutaneous (acute), Crimean-Congo hemorrhagic fever, sandfly fever, typhus-miteborne; and Low for, the plague and West Nile fever. Health risk is reduced to low by proper wear of the uniform, application of repellent to exposed skin, and appropriate chemoprophylaxis. Confidence in health risk estimate was high.

6.2.9 Long-term health risks:

Low: The unmitigated risk is moderate for leishmaniasis-visceral (chronic). Risk is reduced to Low by proper wear of the uniform and application of repellent to exposed skin. Confidence in the risk estimate is high.

6.3 Water Contact Diseases

Operations or activities that involve extensive water contact may result in personnel being temporarily debilitated with leptospirosis in some locations. Leptospirosis health risk typically increases during flooding. In addition, although not specifically assessed in this document, bodies of surface water are likely to be contaminated with human and animal waste. Activities such as wading or swimming may result in exposures to enteric diseases such as diarrhea and hepatitis via incidental ingestion of water. Prolonged water contact also may lead to the development of a variety of potentially debilitating skin conditions such as bacterial or fungal dermatitis. Mitigation strategies were in place and included avoiding water contact and recreational water activities, proper wear of uniform (especially footwear), and protective coverings for cuts/abraded skin.
6.3.1 Leptospirosis

Moderate, mitigated to Low: Human infections occur seasonally (typically April through November) through exposure to water or soil contaminated by infected animals and is associated with wading, and swimming in contaminated, untreated open water. The occurrence of flooding after heavy rainfall facilitates the spread of the organism because as water saturates the environment *Leptospira* present in the soil passes directly into surface waters. *Leptospira* can enter the body through cut or abraded skin, mucous membranes, and conjunctivae. Infection may also occur from ingestion of contaminated water. The acute, generalized illness associated with infection may mimic other tropical diseases (for example, dengue fever, malaria, and typhus), and common symptoms include fever, chills, myalgia, nausea, diarrhea, cough, and conjunctival suffusion. Manifestations of severe disease can include jaundice, renal failure, hemorrhage, pneumonitis, and hemodynamic collapse. Recreational activities involving extensive water contact may result in personnel being temporarily debilitated with leptospirosis. Incidence could result in debilitating febrile illness typically requiring 1 to 7 days of inpatient care, followed by return to duty; some cases may require prolonged convalescence. This disease is associated with a Moderate health risk estimate.

6.3.2 Short-term health risks:

Low: Unmitigated Health risk of leptospirosis is Moderate during warmer months. Mitigation measures reduce the risk to Low. Confidence in the health risk estimate is high.

6.3.3 Long-term health risks:

None identified based on available data.

6.4 Respiratory Diseases

Although not specifically assessed in this document, deployed U.S. forces may be exposed to a wide variety of common respiratory infections in the local population. These include influenza, pertussis, viral upper respiratory infections, viral and bacterial pneumonia, and others. The U.S. military populations living in close-quarter conditions are at risk for substantial person-to-person spread of respiratory pathogens. Influenza is of particular concern because of its ability to debilitate large numbers of unvaccinated personnel for several days. Mitigation strategies were in place and included routine medical screenings, vaccination, enforcing minimum space allocation in housing units, implementing head-to-toe sleeping in crowded housing units, implementation of proper personal protective equipment (PPE) when necessary for healthcare providers and detention facility personnel.

6.4.1 Tuberculosis (TB)

Moderate, mitigated to Low: Potential health risk to U.S. personnel is Moderate, mitigated to Low, year round. Transmission typically requires close and prolonged contact with an active case of pulmonary or laryngeal TB, although it also can occur with more incidental contact. Individuals with prolonged indoor exposure to the local population are at increased risk for latent TB infection. Additional mitigation included active case isolation in negative pressure rooms, where available.

6.4.2 Meningococcal meningitis

Low: Meningococcal meningitis poses a Low risk and is transmitted from person to person through droplets of respiratory or throat secretions. Close and prolonged contact facilitates the spread of this disease. Meningococcal meningitis is potentially a very severe disease typically requiring intensive care; fatalities may occur in 5-15% of cases.
6.4.3 Short-term health risks:

Low: Moderate (TB) to Low (for meningococcal meningitis). Overall risk was reduced to Low with mitigation measures. Confidence in the health risk estimate is high.

6.4.4 Long-term health risks:

None identified based on available data. Tuberculosis is evaluated as part of the post deployment health assessment (PDHA). A TB skin test is required post-deployment if potentially exposed and is based upon individual service policies.

6.5 Animal-Contact Diseases

6.5.1 Rabies

Moderate, mitigated to Low: Rabies posed a year-round moderate risk. Occurrence in local animals was well above U.S. levels due to the lack of organized control programs. Dogs are the primary reservoir of rabies in Afghanistan, and a frequent source of human exposure. Rabies is transmitted by exposure to the virus-laden saliva of an infected animal, typically through bites, but could occur from scratches contaminated with the saliva. A U.S. Army Soldier deployed to Afghanistan from May 2010 to May 2011 died of rabies in New York on 31 August 2011 (Reference 15). Laboratory results indicated the Soldier was infected from contact with a dog while deployed. Although the vast majority (>99%) of persons who develop rabies disease will do so within a year after a risk exposure, there have been rare reports of individuals presenting with rabies disease up to six years or more after their last known risk exposure. Mitigation strategies included command emphasis of CENTCOM GO 1B, reduction of animal habitats, active pest management programs, and timely treatment of feral animal scratches/bites.

6.5.2 Anthrax

Low: Anthrax cases are rare in indigenous personnel, and pose a Low risk to U.S. personnel. Anthrax is a naturally occurring infection; cutaneous anthrax is transmitted by direct contact with infected animals or carcasses, including hides. Eating undercooked infected meat may result in contracting gastrointestinal anthrax. Pulmonary anthrax is contracted through inhalation of spores and is extremely rare. Mitigation measures included consuming approved food sources, proper food preparation and cooking temperatures, avoidance of animals and farms, dust abatement when working in these areas, vaccinations, and proper PPE for personnel working with animals.

6.5.3 Q-Fever

Moderate, mitigated to Low: Potential health risk to U.S. personnel is Moderate, but mitigated to Low, year round. Rare cases are possible among personnel exposed to aerosols from infected animals, with clusters of cases possible in some situations. Significant outbreaks (affecting 1-50%) can occur in personnel with heavy exposure to barnyards or other areas where animals are kept. Unpasteurized milk may also transmit infection. The primary route of exposure is respiratory, with an infectious dose as low as a single organism. Incidence could result in debilitating febrile illness, sometimes presenting as pneumonia, typically requiring 1 to 7 days of inpatient care followed by return to duty. Mitigation strategies in place as listed in paragraph 6.5.2 except for vaccinations.
6.5.4 H5N1 avian influenza

Low: Potential health risk to U.S. personnel is Low. Although H5N1 avian influenza (AI) is easily transmitted among birds, bird-to-human transmission is extremely inefficient. Human-to-human transmission appears to be exceedingly rare, even with relatively close contact. Extremely rare cases (less than 0.01% per month attack rate) could occur. Incidence could result in very severe illness with fatality rate higher than 50 percent in symptomatic cases. Mitigation strategies included avoidance of birds/poultry and proper cooking temperatures for poultry products.

6.5.5 Short-term health risks:

Low: The short-term unmitigated risk is Moderate for rabies, and Q-fever, to Low for anthrax, and H5N1 avian influenza. Mitigation measures reduced the overall risk to Low. Confidence in risk estimate is high.

6.5.6 Long-term health risks:

Low: A Low long term risk exists for rabies because, in rare cases, the incubation period for rabies can be several years.

7 Venomous Animal/Insect

All information was taken directly from the Armed Forces Pest Management Board (Reference 16) and the Clinical Toxinology Resources web site from the University of Adelaide, Australia (Reference 17). The species listed below have home ranges that overlap the location of FSB Herat and vicinity, and may present a health risk if they are encountered by personnel. See Section 9 for more information about pesticides and pest control measures.

7.1 Spiders

- *Latrodectus dahlia* (widow spider): Severe envenoming possible, potentially lethal. However, venom effects are mostly minor and even significant envenoming is unlikely to be lethal.

7.2 Scorpions

- *Androctonus amoreuxi*, and *Androctonus baluchicus*: Severe envenoming possible, potentially lethal. Severe envenoming may produce direct or indirect cardio toxicity, with cardiac arrhythmias, cardiac failure. Hypovolaemic hypotension possible in severe cases due to fluid loss through vomiting and sweating.

- *Afghanobuthus nuamanni*, *Buthacus striffleri*, *Compsobuthus afghanus*, *Compsobuthus rugosulus*, *Mesobuthus caucasicus*, *Mesobuthus epeus*, *Mesobuthus macmahoni*, *Orthochirus bicolor*, *Orthochirus danielleae*, *Orthochirus erardi*, *Orthochirus heratensis*, *Orthochirus monodi*, *Orthochirus pallidus*, *Orthochirus scrobiculatus*, and *Sassanidotus gracilis*: There are a number of dangerous Buthid scorpions, but there are also some known to cause minimal effects only. Without clinical data it is unclear where these species fit within that spectrum.

- *Hottentotta alticola*, and *Hottentotta saulcyi*: Moderate envenoming possible but unlikely to prove lethal. Stings by these scorpions are likely to cause only short lived local effects, such as pain, without systemic effects.
7.3 Snakes

- *Echis carinatus multisquamatus* (central Asian saw-scaled viper), and *Gloydius halys* (Haly’s Pit Viper): Severe envenoming possible, potentially lethal. Bites may cause moderate to severe coagulopathy and haemorrhagins causing extensive bleeding.

- *Macrovipera lebetina turanica* (Levantine Viper): Severe envenoming possible, potentially lethal. Bites may cause mild to severe local effects, shock & coagulopathy.

- *Naja oxiana* (Oxus cobra): Severe envenoming possible, potentially lethal. Bites can cause systemic effects, principally flaccid paralysis.

- *Pseudocerastes persicus* (Persian dwarf snake): Unlikely to cause significant envenoming; limited clinical data suggest bites result in local effects only.

- *Gloydius intermedius* (Central Asian pit viper): Potentially lethal envenoming, though unlikely, cannot be excluded. Bites cause in local and sometimes systemic effects including necrosis, coagulopathy, and renal failure.

7.4 Short-term health risk:

Low: If encountered, effects of venom vary with species from mild localized swelling (e.g. widow spider) to potentially lethal effects (e.g., Haly’s Pit Viper). See effects of venom above. Mitigation strategies included avoiding contact, proper wear of uniform (especially footwear), and timely medical treatment. Confidence in the health risk estimate is low (Reference 8, Table 3-6).

7.5 Long-term health risk:

None identified.

8 Heat/Cold Stress

8.1 Heat

Summer (June - September) monthly mean daily maximum temperatures range from 88 degrees Fahrenheit (°F) to 98 (°F) with an average temperature of 95 °F based on historical climatological data from the U.S. Air Force Combat Climatology Center, 14th Weather Squadron. The health risk of heat stress/injury based on temperatures alone is Low (< 78 °F) from November – March, Moderate (78-81.9°F) in April and October, and extremely high (≥ 88°F) from May - September. However, work intensity and clothing/equipment worn pose greater health risk of heat stress/injury than environmental factors alone (Reference 18). Managing risk of hot weather operations included monitoring work/rest periods, proper hydration, and taking individual risk factors (e.g., acclimation, weight, and physical conditioning) into consideration. Risk of heat stress/injury was reduced with preventive measures

8.1.1 Short-term health risk:

Low to Extremely High, mitigated to Low: The risk of heat injury was reduced to low through preventive measures such as work/rest cycles, proper hydration and nutrition, and monitoring Wet Bulb Globe Temperature (WBGT). Risk of heat injury in unacclimatized or susceptible populations (older, previous history of heat injury, poor physical condition, underlying medical/health conditions), and those under operational constraints (equipment, PPE, vehicles) is Extremely High from May - September,
Moderate in April and October, and Low from November – March. Confidence in the health risk estimate is low (Reference 8, Table 3-6).

8.1.2 Long-term health risk:

Low: The long-term risk is Low. However, the risk may be greater for certain susceptible persons—those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions. Long-term health implications from heat injuries are rare but may occur, especially from more serious injuries such as heat stroke. It is possible that high heat in conjunction with various chemical exposures may increase long-term health risks, though specific scientific evidence is not conclusive. Confidence in these risk estimates is medium (Reference 8, Table 3-6).

8.2 Cold

8.2.1 Short-term health risks:

Winter (December - March) mean daily minimum temperatures range from 28 degrees Fahrenheit (°F) to 44 °F with an average temperature of 35 °F based on historical climatological data from the U.S. Air Force Combat Climatology Center, 14th Weather Squadron. Because even on warm days a significant drop in temperature after sunset by as much as 40 °F can occur, there is a risk of cold stress/injury from October – April. The risk assessment for Non-Freezing Cold Injuries (NFCI), such as chilblain, trench foot, and hypothermia, is Low based on historical temperature and precipitation data. Frostbite is unlikely to occur because temperatures rarely drop below freezing. However, personnel may encounter significantly lower temperatures during field operations at higher altitudes. As with heat stress/injuries, cold stress/injuries are largely dependent on operational and individual factors instead of environmental factors alone (Reference 18).

Low: The health risk of cold injury is Low. Confidence in the health risk estimate is medium.

8.2.2 Long-term health risk:

Low: The health risk of cold injury is Low. Confidence in the health risk estimate is high.

9 Noise

9.1 Continuous

FOB Adraskan: Inside the generator farm building noise levels were documented at 101 decibels (dBA). Personnel that work on generators wear all proper personnel protective equipment (PPE). Noise levels outside the generator farm building were documented at 80 dBA (Reference 9).

No other specific hazard sources were documented in the DOEHRS or MESL from 9 December 2006 through 31 December 2015 timeframe.

9.1.1 Short and long-term health risks:

Not evaluated

9.2 Impulse

No specific hazard sources were documented in the DOEHRS or MESL from 9 December 2006 through 31 December 2015 timeframe.
9.2.1 Short-term and Long-term health risks:

Not evaluated.

10 Unique Incidents/Concerns

10.1 Potential environmental contamination sources

DoD personnel are exposed to various chemical, physical, ergonomic, and biological hazards in the course of performing their mission. These types of hazards depend on the mission of the unit and the operations and tasks which the personnel are required to perform to complete their mission. The health risk associated with these hazards depends on a number of elements including what materials are used, how long the exposure lasts, what is done to the material, the environment where the task or operation is performed, and what controls are used. The hazards can include exposures to heavy metal particulates (e.g. lead, cadmium, manganese, chromium, and iron oxide), solvents, fuels, oils, and gases (e.g. carbon monoxide, carbon dioxide, oxides of nitrogen, and oxides of sulfur). Most of these exposures occur when performing maintenance tasks such as painting, grinding, welding, engine repair, or movement through contaminated areas. Exposures to these occupational hazards can occur through inhalation (air), skin contact, or ingestion; however, exposures through air are generally associated with the highest health risk.

10.2 Waste Sites/Waste Disposal

FOB Adraskan: Medical waste was disinfected using bleach and disposed of in regular trash. Trash was hauled off post by a local contractor (Reference 9).

FSB Herat: An incinerator was used for disposal of medical waste (Reference 5).

FOB Qual-E-Naw: All solid waste and waste from septic tank removed by local national three times per week using trucks for the removal (Reference 4).

COP Reaper: Solid waste from food and other activities is taken to the burn pit daily. Since there is no incinerator for medical waste, the medic was instructed to put all waste in a container and take it to the burn pit (Reference 10).

FOB Shindand AB: Trash hauled off post by a local contractor and burned in the 30 cubic meters pit approximately 1500 meters (m) from troops. Incinerators were present, but used infrequently (Reference 6 and 19). All wastewater was piped to the wastewater treatment plant located on the ANA compound. At the time of inspection the finished product was used as irrigation water, however, the in-line chlorinator was broken. Batteries are palletized then shipped to Kandahar Airfield for disposal (Reference 6).

FOB Stone: Hazardous waste was removed from the camp by local contractors. Medical waste is sent to FSB Herat or a local ANA hospital (Reference 11).

FOB Todd: Solid waste was disposed in a burn pit located outside the FOB perimeter. Black water is collected in a septic tank then removed for disposal off post via truck (Reference 7).
10.3 Fuel/petroleum products/industrial chemical spills

Multiple fuel spills from 50 to 200 gallons of JP-8 have been reported at the FOB Todd refueling point (Reference 7).

10.4 Pesticides/Pest Control:

The health risk of exposure to pesticide residues is considered within the framework of typical residential exposure scenarios, based on the types of equipment, techniques, and pesticide products that have been employed, such as enclosed bait stations for rodenticides, various handheld equipment for spot treatments of insecticides and herbicides, and a number of ready-to-use (RTU) methods such as aerosol cans and baits. The control of rodents required the majority of pest management inputs, with the acutely toxic rodenticides staged as solid formulation lethal baits placed in tamper-resistant bait stations indoors and outdoors throughout cantonment areas. Nuisance insects, including biting and stinging insects such as bees, wasps, and ants, also required significant pest management inputs. Use of pesticides targeting against these pests generally involved selection of compounds with low mammalian toxicity and short-term residual using pinpoint rather than broadcast application techniques. No specific hazard sources were documented in DOEHRS or MESL data portal. A total of 258 monthly pesticide application reports in the MESL data portal for FSB Herat and Vicinity (December 2006 through December 2015) list the usage of pesticides on the site. For each pesticide product applied during this period, the EPA approved label has been archived, providing a framework how each pesticide handled and applied (see below).

10.4.1 Rodenticides

Brodifacoum, bromadiolone, zinc phosphide, imidacloprid, and warfarin were used to control rodents.

10.4.2 Insecticides

Insecticides used to control ants, bees, beetles, flies, mosquitoes, moths, scorpions, silverfish, spiders, termites, and wasps include: (Z)-9- Tricosene, 1,2-propanediol, abamectin B1, Bacillus thuringiensis subspecies israelensis, bifenthrin, cypermethrin, deltamethrin, dichlorvos, d-trans allethrin, fipronil, hydramethylnon, imidacloprid, lambda-cyhalothrin, methomyl, nithiazine, phenothrin, piperonyl butoxide, polybutylenes, polyisobutylenes, pyrethrins, ß-Cyfluthrin

10.4.3 Snakes repellents

Naphthalene and sulfur were used to control snakes.

10.4.4 Short- and Long-term health risks

Low: Short- and Long-term health risks are Low. Confidence in the health risk assessment is medium (Reference 4, Table 3-6).

10.5 Asbestos

No specific hazard sources were documented in the DOEHRS or MESL from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).
10.6 Lead Based Paint

No specific hazard sources were documented in the DOEHRs or MESL from 9 December 2006 through 31 December 2015 timeframe (References 1 and 13).

10.7 Burn Pit

FSB Herat: An incinerator was used for disposal of medical waste (Reference 5).

COP Reaper: Solid waste from food and other activities is taken to the burn pit daily. The burn pit is located away from the living area and in a way that does not affect the COP’s population. Since there is no incinerator for medical waste, the medic was instructed to put all waste in a container and take it to the burn pit (Reference 10).

FOB Shindand AB: Trash hauled off post by a local contractor and burned in the 30 m3 pit approximately 1500 m from troops. The FOB had a medical incinerator that was not working as of January 2010 OEHSA (Reference 6). When medical incinerator is not working, medical waste was disposed in medical incinerator at FOB Thomas. Two incinerators were transferred to the FOB in June 2012 (Reference 19). However, by the end of 2012 the incinerators were running at reduced capacity due to mechanical issues. Following the incinerator repairs in January 2013, reports show that the incinerators were not returned to operation as of February 2014 (Reference 19).

FOB Todd: Solid waste was disposed in a burn pit located outside the FOB perimeter. The burn pit was situated approximately 100 m from troops to the Southwest. Prevailing winds are from the North (Reference 7).

While not specific to FSB Herat and Vicinity, the consolidated epidemiological and environmental sampling and studies on burn pits that have been conducted as of the date of this publication have been unable to determine whether an association does or does not exist between exposures to emissions from the burn pits and long-term health effects (Reference 20). The Institute of Medicine committee’s (Reference 20) review of the literature and the data suggests that service in Iraq or Afghanistan (i.e., a broader consideration of air pollution than exposure only to burn pit emissions) may be associated with long-term health effects, particularly in susceptible (e.g., those who have asthma) or highly exposed subpopulations, such as those who worked at the burn pit. Such health effects would be due mainly to high ambient concentrations of PM from both natural and anthropogenic sources, including military sources. If that broader exposure to air pollution turns out to be relevant, potentially related health effects of concern are respiratory and cardiovascular effects and cancer. Susceptibility to the PM health effects could be exacerbated by other exposures, such as stress, smoking, local climatic conditions, and co-exposures to other chemicals that affect the same biologic or chemical processes. Individually, the chemicals measured at burn pit sites in the study were generally below concentrations of health concern for general populations in the United States. However, the possibility of exposure to mixtures of the chemicals raises the potential for health outcomes associated with cumulative exposure to combinations of the constituents of burn pit emissions and emissions from other sources.
10.7.1 PM$_{10}$

10.7.1.2 Exposure Guidelines:

Short-term (24-hour) PM$_{10}$ (μg/m3):
- Negligible MEG = 250
- Marginal MEG = 420
- Critical MEG = 600

Long-term PM$_{10}$ (μg/m3):
- Not defined and not available.

10.7.1.3 Sample data/notes

FOB Todd: PM$_{10}$: A single valid PM$_{10}$ air sample was collected near the burn pit on 6 April 2011. The 24-hour PM$_{10}$ concentration was 110 μg/m3. The PM$_{10}$ sample concentration was below the short-term negligible MEG. However, the single sample was insufficient to characterize risk.

10.7.1.4 Short-term health risks:

Not evaluated: Data were insufficient to characterize risk.

10.7.1.5 Long-term health risk:

Not Evaluated-no available health guidelines. The EPA has retracted its long-term NAAQS for PM$_{10}$ due to an inability to clearly link chronic health effects with chronic PM$_{10}$ exposure levels.

10.7.2 PM$_{2.5}$

10.7.2.1 Exposure Guidelines:

Short Term (24-hour) PM$_{2.5}$ (μg/m3):
- Negligible MEG = 65
- Marginal MEG = 250
- Critical MEG = 500

Long-term (1 year) PM$_{2.5}$ MEGs (μg/m3):
- Negligible MEG = 15
- Marginal MEG = 65.

10.7.2.2 Sample data/Notes:

FOB Shindand AB: A single valid PM$_{2.5}$ air sample was collected near the burn pit on 1 July 2012. The 24-hour PM$_{2.5}$ concentration was 225 μg/m3.

10.7.2.3 Short and Long-term health risks:

Not evaluated: Data were insufficient to characterize risk.

10.7.3 Airborne Metals

10.7.3.1 Exposure Guidelines:

None of the detected metals exceeded the 1-year negligible MEG

10.7.3.2 Sample data/Notes:
FOB Shindand AB:
- PM$_{2.5}$: A single valid airborne metal PM$_{2.5}$ sample was collected near the burn pit on 1 July 2012. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

FOB Todd:
- PM$_{10}$: A single valid airborne metal PM$_{10}$ air sample was collected near the burn pit on 6 April 2011. No metals detected in samples had a peak concentration greater than the 1 year negligible MEG.

10.7.3.3 Short and long-term health risks:

None identified based on the available sampling data.

10.7.4 VOC

10.7.4.1 Exposure Guidelines:

Benzene:
- Short-term (14-day) VOC (μg/m3): Negligible MEG = 639
- Long-term (1 year) VOC (μg/m3): Negligible MEG = 54.8

10.7.4.2 Sample data/Notes:

FOB Shindand AB: A single valid VOC sample was collected near the burn pit on 2 July 2012. Benzene was detected (73.4 ug/m3) with a concentration greater than the 1 year negligible MEG of 54.8 ug/m3.

10.7.4.3 Short-term health risks:

None identified based on the available sampling data.

10.7.4.4 Long-term health risks:

None identified based on the available sampling data. Benzene was detected above the 1 year negligible MEG. However, the single sample was insufficient to characterize risk.
11 References

2. DoDI 6055.05, Occupational and Environmental Health, 2008.

7. Occupational & Environmental Health Site Assessment, FOB Todd, Bala Morghab, Afghanistan. 180th Preventive Medical Detachment, Afghanistan, March 2010.

8. USAPHC TG230, June 2013 Revision.

12. Occupational & Environmental Health Site Assessment, Camp Stone (Herat), Afghanistan. 12th Medical Detachment, Afghanistan, October 2010.

13. DoD MESL Data Portal: https://mesl.apgea.army.mil/mesl/. Some of the data and reports used may be classified or otherwise have some restricted distribution.

1 NOTE. The data are currently assessed using the 2013 TG230. The general method involves an initial review of the data which eliminates all chemical substances not detected above 1-yr negligible MEGs. Those substances screened out are not considered acute or chronic health hazards so are not assessed further. For remaining substances, acute and chronic health effects are evaluated separately for air water (soil is only evaluated for long term risk). This is performed by deriving separate short-term and long term population exposure level and estimates (referred to as population exposure point concentrations (PEPC)) that are compared to MEGs derived for similar exposure durations. If less than or equal to negligible MEG the risk is Low. If levels are higher than negligible then there is a chemical-specific toxicity and exposure evaluation by appropriate SMEs, which includes comparison to any available marginal, critical or catastrophic MEGs. For drinking water 15 L/day MEGs are used for the screening while site specific 5-15 L/day are used for more detailed assessment. For nondrinking water (such as that used for personal hygiene or cooking) the ‘consumption rate’ is limited to 2 L/day (similar to the EPA) which is derived by multiplying the 5 L/day MEG by a factor of 2.5. This value is used to conservatively assess non drinking uses of water.

Where Do I Get More Information?

If a provider feels that the Service member’s or Veteran’s current medical condition may be attributed to specific OEH exposures at this deployment location, he/she can contact the Service-specific organization below. Organizations external to DoD should contact Deputy Assistant Secretary of Defense for Health Readiness Policy and Oversight (HRP&O).

<table>
<thead>
<tr>
<th>Organization</th>
<th>Phone Number</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Public Health Center (Provisional)</td>
<td>(800) 222-9698</td>
<td>http://phc.amedd.army.mil/</td>
</tr>
</tbody>
</table>