Military Deployment

Periodic Occupational and Environmental Monitoring Summary (POEMS):
Camp Bucca and Umm Qasr, Iraq; CY: 2003 to Close (2011)

AUTHORITY: This periodic occupational and environmental monitoring summary (POEMS) has been developed in accordance with Department of Defense (DoD) Instructions 6490.03, 6055.05, and JCSM (MCM) 0028-07, See REFERENCES.

PURPOSE: This POEMS documents the DoD assessment of Occupational and Environmental Health (OEH) risk for Camp Bucca and Umm Qasr, Iraq. It presents a qualitative summary of health risks identified at this location and their potential medical implications. The report is based on information collected from 09 April 2003 through 10 February 2011 to include deployment OEH surveillance sampling and monitoring data (e.g., air, water, and soil), field investigation and health assessment reports, as well as country and area-specific information on endemic diseases. A previous POEMS was completed for only Camp Bucca in 2010 and is superseded by this POEMS which includes Umm Qasr sampling and monitoring data in addition to the data contained in the previous POEMS.

This assessment assumes that environmental sampling at Camp Bucca and Umm Qasr during this period was performed at representative exposure points selected to characterize health risks at the population-level. Due to the nature of environmental sampling, the data upon which this report is based may not be fully representative of all the fluctuations in environmental quality or capture unique occurrences. While one might expect health risks pertaining to historic or future conditions at this site to be similar to those described in this report, the health risk assessment is limited to 09 April 2003 through 10 February 2011.

The POEMS can be useful to inform healthcare providers and others of environmental conditions experienced by individuals deployed to Camp Bucca and Umm Qasr during the period of this assessment. However, it does not represent an individual exposure profile. Individual exposures depend on many variables such as; how long, how often, where and what someone is doing while working and/or spending time outside. Individual outdoor activities and associated routes of exposure are extremely variable and cannot be identified from or during environmental sampling. Individuals who sought medical treatment related to OEH exposures while deployed should have exposure/treatment noted in their medical record on a Standard Form (SF) 600 (Chronological Record of Medical Care).

SITE DESCRIPTION: Umm Qasr is a port city in southern Iraq with a population estimate of around 46,000 people living there at the outbreak of the Operation Iraqi Freedom (March 2003). Camp Bucca was located approximately 1.6 miles outside of Umm Qasr in Iraq. The camp was the coalition’s primary facility for detainees. On 17 September 2009 Camp Bucca closed down detainee operations. In December 2010 the U.S. military handed the base to the government of Iraq, who gave the base to the Kufan Group of Iraq. Camp Bucca is being rebuilt as Basra Gateway, a logistics city and environmentally friendly industrial hub.

SUMMARY: Conditions that may pose a moderate or greater health risk are summarized in Table 1. Table 2 provides population based risk estimates for identified OEH conditions at Camp Bucca and Umm Qasr. As indicated in the detailed sections that follow Table 2, controls established to reduce health risk were factored into this assessment. In some cases, e.g. ambient air, specific controls are noted, but not routinely available/feasible.
Air quality: For PM$_{10}$ and PM$_{2.5}$, exposures may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel while at this site. For PM$_{10}$ and PM$_{2.5}$, certain subgroups of the deployed forces (e.g., those with pre-existing asthma/cardio-pulmonary conditions) are at greatest risk of developing notable health effects. Likewise, for burn pits, exposures to high levels of PM$_{10}$ and PM$_{2.5}$ in the smoke may also result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel and certain subgroups while at this site.

Although most effects from exposure to particulate matter and burn pit smoke should have resolved post-deployment, providers should be prepared to consider the relationship between deployment exposures and current complaints. Some individuals may have sought treatment for acute respiratory irritation during their time at Camp Bucca and Umm Qasr. Personnel who reported with symptoms or required treatment while at this site should have exposure/treatment noted in medical record (e.g., electronic medical record and/or on a Standard Form (SF) 600 (Chronological Record of Medical Care)).

Long-term health risks & medical implications:

The hazards associated with potential long-term health effects at Camp Bucca and Umm Qasr include inhalable fine particulate matter less than 2.5 micrometers in diameter (PM$_{2.5}$) and burn pits.

Air Quality: For inhalational exposure to high levels of dust and PM$_{2.5}$, such as during high winds or dust storms, and for exposure to burn pit smoke, it is considered possible that some otherwise healthy personnel who were exposed for a long-term period to dust and particulate matter could develop certain health conditions (e.g., reduced lung function, cardiopulmonary disease). Personnel with a history of asthma or cardiopulmonary disease could potentially be more likely to develop such chronic health conditions. While the PM exposures are documented and archived, at this time there are no specific recommended, post-deployment medical surveillance evaluations or treatments. Providers should still consider overall individual health status (e.g., any underlying conditions/ susceptibilities) and any potential unique individual exposures (such as burn pits, occupational exposures, or specific personal dosimeter data) and individual behaviors when assessing individual concerns. Certain individuals may need to be followed/evaluated for specific occupational exposures/injuries (e.g., annual audiograms as part of the medical surveillance for those enrolled in the Hearing Conservation Program; and personnel covered by Respiratory Protection Program and/or Hazardous Waste/Emergency Responders Medical Surveillance).

Table 1: Summary of Occupational and Environmental Conditions with MODERATE or Greater Health Risk

<table>
<thead>
<tr>
<th>Short-term health risks & medical implications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following may have caused acute health effects in some personnel during deployment at Camp Bucca and Umm Qasr:</td>
</tr>
</tbody>
</table>

Inhalable coarse particulate matter less than 10 micrometers in diameter (PM$_{10}$); inhalable fine particulate matter less than 2.5 micrometers in diameter (PM$_{2.5}$); food/waterborne diseases (e.g., bacterial diarrhea, hepatitis A, typhoid fever, brucellosis, diarrhea-cholera, diarrhea-protozoal); other endemic diseases (cutaneous leishmaniasis, Crimean-Congo hemorrhagic fever, sandfly fever, typhus-miteborne, leptospirosis, schistosomiasis, Tuberculosis (TB), rabies, Q fever); heat stress; and burn pits. For food/waterborne diseases (e.g., bacterial diarrhea, hepatitis A, typhoid fever, brucellosis, diarrhea-cholera, diarrhea-protozoal), if ingesting local food and water, the health effects can temporarily incapacitate personnel (diarrhea) or result in prolonged illness (hepatitis A, typhoid fever, brucellosis). Risks from food/waterborne diseases may have been reduced with preventive medicine controls and mitigation, which includes hepatitis A and typhoid fever vaccinations and only drinking from approved water sources in accordance with standing CENTCOM policy. For other vector-borne endemic diseases (cutaneous leishmaniasis, Crimean-Congo hemorrhagic fever, sandfly fever, typhus-miteborne), these diseases may constitute a significant risk due to exposure to biting vectors; risk reduced to Low by proper wear of the treated uniform, application of repellent to exposed skin and bed net, minimizing areas of standing water, and appropriate chemoprophylaxis. For water contact diseases (leptospirosis, schistosomiasis) activities involving extensive contact with surface water increase risk. For respiratory diseases (TB), personnel in close-quarter conditions could have been at risk for person-to-person spread. Animal contact diseases (rabies, Q fever), pose year-round risk. For heat stress, risk can be greater during the months of March through October and for susceptible persons including those older than 45, of low fitness level, unacclimatized, or with underlying medical conditions. Risks from heat stress may have been reduced with preventive medicine controls, work-rest cycles, and mitigation.

Air quality: For PM$_{10}$ and PM$_{2.5}$, exposures may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel while at this site. For PM$_{10}$ and PM$_{2.5}$, certain subgroups of the deployed forces (e.g., those with pre-existing asthma/cardio-pulmonary conditions) are at greatest risk of developing notable health effects. Likewise, for burn pits, exposures to high levels of PM$_{10}$ and PM$_{2.5}$ in the smoke may also result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel and certain subgroups while at this site.

Although most effects from exposure to particulate matter and burn pit smoke should have resolved post-deployment, providers should be prepared to consider the relationship between deployment exposures and current complaints. Some individuals may have sought treatment for acute respiratory irritation during their time at Camp Bucca and Umm Qasr. Personnel who reported with symptoms or required treatment while at this site should have exposure/treatment noted in medical record (e.g., electronic medical record and/or on a Standard Form (SF) 600 (Chronological Record of Medical Care)).
<table>
<thead>
<tr>
<th>Source of Identified Health Risk</th>
<th>Unmitigated Health Risk Estimate</th>
<th>Control Measures Implemented</th>
<th>Residual Health Risk Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter less than 10 micrometers in diameter (PM$_{10}$)</td>
<td>Short-term: Variable (Low to High), Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases).</td>
<td>Limiting strenuous physical activities when air quality is especially poor; and actions such as closing tent flaps, windows, and doors.</td>
<td>Short-term: Variable (Low to High), Daily levels vary, acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases).</td>
</tr>
<tr>
<td>Particulate matter less than 2.5 microns in diameter (PM$_{2.5}$)</td>
<td>Short-term: Moderate to High, A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.</td>
<td>Limiting strenuous physical activities when air quality is especially poor; and actions such as closing tent flaps, windows, and doors.</td>
<td>Short-term: Moderate to High, A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated.</td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOC)</td>
<td>Short-term: Low, a few personnel may experience mild effects during peak levels such as headaches, nausea, lightheadedness, and weakness.</td>
<td>Limiting strenuous physical activities when air quality is especially poor; and actions such as closing tent flaps, windows, and doors.</td>
<td>Short-term: Low, a few personnel may experience mild effects during peak levels such as headaches, nausea, lightheadedness, and weakness.</td>
</tr>
<tr>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumed Water (Water Used for Drinking)</td>
<td>Short-term: Low</td>
<td>APHC (former VETCOM) Approved Bottled Water; Potable water only from approved water sources</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td>Long-term: Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water for Other Purposes</td>
<td>Short-term: Low</td>
<td>Water treated in accordance with standards applicable to its intended use</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td>Long-term: Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDEMIC DISEASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food borne/Waterborne (e.g., diarrhea-bacteriological)</td>
<td>Short-term: Variable: High (bacterial diarrhea, hepatitis A, typhoid/paratyphoid fever) to Moderate (diarrhea-cholera, diarrhea-protozoal, brucellosis) to Low (hepatitis E). If local food/water were consumed, the health effects can temporarily incapacitate personnel (diarrhea) or result in prolonged illness (Hepatitis A, Typhoid fever, Brucellosis, Hepatitis E).</td>
<td>Preventive measures include Hepatitis A and Typhoid fever vaccination and consumption of food and water only from approved sources.</td>
<td>Short-term: Low to none</td>
</tr>
<tr>
<td>Long-term: none identified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Population-Based Health Risk Estimates - Camp Bucca and Umm Qasr

Reviewed by CENTCOM SG (28 June 2013)
Final Approval Date (02 August 2013)
<table>
<thead>
<tr>
<th>Source of Identified Health Risk</th>
<th>Unmitigated Health Risk Estimate</th>
<th>Control Measures Implemented</th>
<th>Residual Health Risk Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthropod Vector Borne</td>
<td>Short-term: Variable, Moderate for leishmaniasis-cutaneous, Crimean-Congo hemorrhagic fever, sandfly fever and typhus-miteborne; Low for West Nile fever, and Plague.</td>
<td>Preventive measures include proper wear of treated uniform, application of repellent to exposed skin, and bed net use, minimizing areas of standing water.</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low (Leishmaniasis-visceral infection)</td>
<td></td>
<td>Long-term: No data available</td>
</tr>
<tr>
<td>Water-Contact (e.g. wading, swimming)</td>
<td>Short-term: Moderate for leptospirosis and schistosomiasis.</td>
<td>Prohibiting recreational water activities and water contact avoidance.</td>
<td>Short-term: Low for leptospirosis and schistosomiasis.</td>
</tr>
<tr>
<td></td>
<td>Long-term: No data available</td>
<td></td>
<td>Long-term: No data available</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Short-term: Variable; Moderate for tuberculosis (TB) to Low for meningococcal meningitis.</td>
<td>Providing adequate living and work space; medical screening; vaccination</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: No data available</td>
<td></td>
<td>Long-term: No data available</td>
</tr>
<tr>
<td>Animal Contact</td>
<td>Short-term: Variable; Moderate for rabies and Q-fever, and Low for Anthrax and H5N1 avian influenza.</td>
<td>Prohibiting contact with, adoption, or feeding of feral animals IAW CENTCOM GO 1B. Risks are further reduced in the event of assessed contact by prompt post-exposure rabies prophylaxis IAW The CDC's ACIP guidance.</td>
<td>Short-term: No data available</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low (Rabies)</td>
<td></td>
<td>Long-term: No data available</td>
</tr>
<tr>
<td>VENOMOUS ANIMAL/INSECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snakes, scorpions, and spiders</td>
<td>Short-term: Low; If encountered, effects of venom vary with species from mild localized swelling (e.g. Scorpio maurus) to potentially lethal effects (e.g. Walterinnesia aegyptia).</td>
<td>Risk reduced by avoiding contact, proper wear of uniform (especially footwear), and proper and timely treatment.</td>
<td>Short-term: Low; If encountered, effects of venom vary with species from mild localized swelling (e.g. Scorpio maurus) to potentially lethal effects (e.g. Walterinnesia aegyptia).</td>
</tr>
<tr>
<td></td>
<td>Long-term: No data available</td>
<td></td>
<td>Long-term: No data available</td>
</tr>
<tr>
<td>HEAT/COLD STRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>Short-term: Variable; Risk of heat injury is Low from December – February, Moderate for March and November, and extremely high from April – October.</td>
<td>Work-rest cycles, proper hydration and nutrition, and wet bulb globe temperature (WBGT) monitoring.</td>
<td>Short-term: Variable; Risk of heat injury is Low from December – February, Moderate for March and November, and extremely high from April – October.</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low. The long-term risk was Low. However, the risk may be greater to certain susceptible persons–those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions.</td>
<td></td>
<td>Long-term: Low. The long-term risk is Low. However, the risk may be greater to certain susceptible persons–those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions.</td>
</tr>
<tr>
<td>Cold</td>
<td>Short-term: Low risk of cold stress/injury.</td>
<td>Risks from cold stress reduced with protective measures such as use of the buddy system, limiting exposure during cold weather, proper hydration and nutrition, and proper wear of issued protective clothing.</td>
<td>Short-term: Low risk of cold stress/injury.</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low; Long-term health implications from cold injuries are rare but can occur, especially from more serious injuries such as frost bite.</td>
<td>Long-term: Low; Long-term health implications from cold injuries are rare but can occur, especially from more serious injuries such as frost bite.</td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous (Flightline, Power Production)</td>
<td>Short-term: Low</td>
<td>Hearing protection used by personnel in higher noise areas.</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low</td>
<td></td>
<td>Long-term: Low</td>
</tr>
</tbody>
</table>
Control Measures

Avoid any obvious spills especially around generators and maintenance areas.

Ensure dumpster lids are shut and mosquito dunks available for standing water.

Residual Health Risk Estimate

Short-term: Low

Long-term: Low

Short-term: Low

Long-term: Low

Source of Identified Health Risk

<table>
<thead>
<tr>
<th>Concerns</th>
<th>Unmitigated Health Risk Estimate</th>
<th>Control Measures Implemented</th>
<th>Residual Health Risk Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Sites/Waste Disposal</td>
<td>Short-term: Low</td>
<td>Ensure dumpster lids are shut and mosquito dunks available for standing water</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low</td>
<td></td>
<td>Long-term: Low</td>
</tr>
<tr>
<td>Fuel/petroleum products/industrial chemical spills</td>
<td>Short-term: Low</td>
<td>Control measures may have included locating burn pits downwind of prevailing winds, increased distance when possible, and improved waste segregation and management techniques</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low</td>
<td></td>
<td>Long-term: Low</td>
</tr>
<tr>
<td>Pesticides/Pest Control</td>
<td>Short-term: Low</td>
<td>See Section 10.4</td>
<td>Short-term: Low</td>
</tr>
<tr>
<td></td>
<td>Long-term: Low</td>
<td></td>
<td>Long-term: Low</td>
</tr>
<tr>
<td>Burn Pit PM\textsubscript{10}</td>
<td>Short-term: Low, Daily levels vary; acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases). Long-term: No health guidelines</td>
<td>Control measures may have included locating burn pits downwind of prevailing winds, increased distance from populated area when possible, and improved waste segregation and management techniques</td>
<td>Short-term: Low, Daily levels vary; acute health effects (e.g., upper respiratory tract irritation) more pronounced during peak days. More serious effects are possible in susceptible persons (e.g., those with asthma/existing respiratory diseases). Long-term: No health guidelines</td>
</tr>
<tr>
<td>Burn Pit PM\textsubscript{2.5}</td>
<td>Short-term: Moderate to High. A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated. Long-term: Low to Moderate. A small percentage of personnel may be at increased risk for developing chronic conditions. Particularly those more susceptible to acute effects (e.g., those with asthma/existing respiratory diseases).</td>
<td>Control measures may have included locating burn pits downwind of populated areas, increased distance from populated area when possible, and improved waste segregation and management techniques</td>
<td>Short-term: Moderate to High. A majority of the time mild acute (short term) health effects are anticipated; certain peak levels may produce mild eye, nose, or throat irritation in some personnel and pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated. Long-term: Low to Moderate. A small percentage of personnel may be at increased risk for developing chronic conditions. Particularly those more susceptible to acute effects (e.g., those with asthma/existing respiratory diseases).</td>
</tr>
</tbody>
</table>

1. This Summary Table provides a qualitative estimate of population-based short- and long-term health risks associated with the occupational environment conditions at Camp Bucca and Umm Qasr. It does not represent an individual exposure profile. Actual individual exposures and health effects depend on many variables. For example, while a chemical may have been present in the environment, if a person did not inhale, ingest, or contact a specific dose of the chemical for adequate duration and frequency, then there may have been no health risk. Alternatively, a person at a specific location may have experienced a unique exposure which could result in a significant individual exposure. Any such person seeking medical care should have their specific exposure documented in an SF600.

2. This assessment is based on specific environmental sampling data and reports obtained from 09 April 2003 through 10 February 2011. Sampling locations are assumed to be representative of exposure points for the camp population but may not reflect all the fluctuations in environmental quality or capture unique exposure incidents.

3. This Summary Table is organized by major categories of identified sources of health risk. It only lists those sub-categories specifically identified and addressed at Camp Bucca and Umm Qasr. The health risks are presented as Low, Moderate, High or Extremely High for both acute and chronic health effects. The health risk level is based on an assessment of both the potential severity of the health effects that could be caused and probability of the exposure that would produce such health effects. Details can be obtained from the APHC/AIPH. Where applicable, “None Identified” is used when though a potential exposure is identified, and no health risks of either a specific acute or chronic health effects are determined. More detailed descriptions of OEH exposures that are evaluated but determined to pose no health risk are discussed in the following sections of this report.

4. Health risks in this Summary Table are based on quantitative surveillance thresholds (e.g., endemic disease rates; host/vector/pathogen surveillance) or screening levels, e.g., Military Exposure Guidelines (MEGs) for chemicals. Some previous assessment reports may provide slightly inconsistent health risk estimates because quantitative criteria such as MEGs may have changed since the samples were originally evaluated and/or because this assessment makes use of all historic site data while previous reports may have only been based on a select few samples.
1 Discussion of Health Risks at Camp Bucca and Umm Qasr, Iraq by Source

The following sections provide additional information about the OEH conditions summarized above. All risk assessments were performed using the methodology described in the US Army Public Health Command Technical Guide 230, *Environmental Health Risk Assessment and Chemical Exposure Guidelines for Deployed Military Personnel* (USAPHC TG 230, reference 9). All OEH risk estimates represent residual risk after accounting for preventive controls in place. Occupational exposures and exposures to endemic diseases are greatly reduced by preventive measures. For environmental exposures related to airborne dust, there are limited preventive measures available, and available measures have little efficacy in reducing exposure to ambient conditions.

2 Air

2.1 Site-Specific Sources Identified

Camp Bucca and Umm Qasr are situated in a dusty semi-arid desert environment. Inhalational exposure to high levels of dust and particulate matter, such as during high winds or dust storms, may result in mild to more serious short-term health effects (e.g., eye, nose or throat and lung irritation) in some personnel. Additionally, certain subgroups of the deployed forces (e.g., those with pre-existing asthma/cardio pulmonary conditions) are at greatest risk of developing notable health effects.

2.2 Particulate matter

Particulate matter (PM) is a complex mixture of extremely small particles suspended in the air. The PM includes solid particles and liquid droplets emitted directly into the air by sources such as: power plants, motor vehicles, aircraft, generators, construction activities, fires, and natural windblown dust. The PM can include sand, soil, metals, volatile organic compounds (VOC), allergens, and other compounds such as nitrates or sulfates that are formed by condensation or transformation of combustion exhaust. The PM composition and particle size vary considerably depending on the source. Generally, PM of health concern is divided into two fractions: PM$_{10}$, which includes coarse particles with a diameter of 10 micrometers or less, and fine particles less than 2.5 micrometers (PM$_{2.5}$), which can reach the deepest regions of the lungs when inhaled. Exposure to excessive PM is linked to a variety of potential health effects.

2.3 Particulate matter, less than 10 micrometers (PM$_{10}$)

2.3.1 Exposure Guidelines:

<table>
<thead>
<tr>
<th>Short Term (24-hour) PM$_{10}$ (µg/m3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible MEG = 250</td>
</tr>
<tr>
<td>Marginal MEG = 420</td>
</tr>
<tr>
<td>Critical MEG = 600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long-term PM$_{10}$ MEG (µg/m3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not defined and not available.</td>
</tr>
</tbody>
</table>

2.3.2 Sample data/Notes:

A total of 195 valid PM$_{10}$ air samples were collected from 2003–2011. The range of 24-hour PM$_{10}$ concentrations was 19 µg/m3 – 2664 µg/m3 with an average concentration of 294 µg/m3.

2.3.3 Short-term health risks:
Variable (Low to High): The short-term PM$_{10}$ health risk assessment is variable (Low to High) based on average and peak PM$_{10}$ sample concentrations, and the likelihood of exposure at these hazard severity levels. The variable risk is due to significant fluctuation in daily concentrations. Risk from peak exposures was high in 2003, 2006, 2008, and 2009 and low in 2007. Risk from typical exposures was low in 2003, 2006, 2007, and 2008 and moderate in 2009. All other years had insufficient data available with which to determine risk. A low health risk suggests little or no impact on accomplishing the mission. A moderate health risk suggests a degraded mission capabilities expected with limited in theater medical countermeasures and resources anticipated. A high health risk suggests a significant degradation of mission capabilities in terms of the required mission standard, inability to accomplish all parts of the mission, or inability to complete the mission standard if hazards occur during the mission (Reference 9, Table 3-2). Daily average health risk levels for PM$_{10}$ show no hazard for 62.7%, low health risk for 24.6%, moderate health risk for 2.8%, and high health risk for 9.9% of the time. Confidence in the short-term PM$_{10}$ health risk assessment is low (Reference 9, Table 3-6).

The hazard severity for average PM$_{10}$ concentrations in samples was negligible to marginal. The hazard severity was negligible in 2003, 2006, 2007, and 2009 and marginal in 2008. The results indicate that for negligible hazard severity a few personnel may experience notable mild eye, nose, or throat irritation; most personnel will experience only mild effects. Pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated. During a marginal hazard severity a majority of personnel will experience notable eye, nose, and throat irritation and some respiratory effects. Some lost-duty days are expected. Significant aerobic activity will increase risk. Those with a history of asthma or cardiopulmonary disease are expected to experience increased symptoms (Reference 9, Table 3-10).

For the highest observed PM$_{10}$ sample concentration, the hazard severity was critical. During peak exposures at the critical hazard severity level, most if not all personnel experience eye, nose, and throat irritation and respiratory effects. Visual acuity is impaired, as is overall aerobic capacity. Some personnel will not be able to perform assigned duties. Lost duty days are expected. Those with a history of asthma or cardiopulmonary disease will experience more severe symptoms. Conditions may also result in adverse, non-health related materiel/logistical impacts (Reference 9, Table 3-10).

2.3.4 Long-term health risk:

Not Evaluated-no available health guidelines. The U. S. Environmental Protection Agency (EPA) has retracted its long-term standard (national ambient air quality standards, NAAQS) for PM$_{10}$ due to an inability to clearly link chronic health effects with chronic PM$_{10}$ exposure levels.

2.4 Particulate Matter, less than 2.5 micrometers (PM$_{2.5}$)

2.4.1 Exposure Guidelines:

Short Term (24-hour) PM$_{2.5}$ (μg/m3):
- Negligible MEG = 65
- Marginal MEG = 250
- Critical MEG = 500

Long-term (1year) PM$_{2.5}$ MEGs (μg/m3):
- Negligible MEG = 15
- Marginal MEG = 65.

2.4.2 Sample data/Notes:

A total of 51 valid PM$_{2.5}$ air samples were collected from 2008–2011, no samples were taken prior to 2008. The range of 24-hour PM$_{2.5}$ concentrations was 24 μg/m3 – 1642 μg/m3 with an average concentration of 180 μg/m3.

Page 7 of 27
Reviewed by CENTCOM SG (28 June 2013)
Final Approval Date (02 August 2013)
2.4.3 Short-term health risks:

Moderate to High: The short-term PM$_{2.5}$ health risk assessment for peak sample concentrations is moderate for 2008 and high for 2009 and for average sample concentrations, low for 2008 and 2009. There were not enough samples taken in 2011 to assess the health risk. A low health risk suggests little or no impact on accomplishing the mission. A moderate health risk suggests a degraded mission capabilities in terms of the required mission standard and will result in reduced mission capability if hazards occur during the mission. A high health risk suggests a significant degradation of mission capabilities in terms of the required mission standard, inability to accomplish all parts of the mission, or inability to complete the mission to standard if hazards occur during the mission (Reference 9, Table 3-2). Daily average health risk levels for PM$_{2.5}$ show no hazard for 48.3%, low health risk for 44.8%, moderate health risk for 3.4%, and high health risk for 3.4% of the time. Confidence in the short-term PM$_{2.5}$ health risk assessment was low (Reference 9, Table 3-6).

The hazard severity was negligible to marginal for average PM$_{2.5}$ sample concentrations. The hazard severity was negligible in 2008 and marginal in 2009. The results indicate that for a negligible hazard severity a few personnel may experience notable mild eye, nose, or throat irritation; most personnel will experience only mild effects. Pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated. For a marginal hazard severity a majority of personnel will experience notable eye, nose, and throat irritation and some respiratory effects. Some lost-duty days are expected. Significant aerobic activity will increase risk. Those with a history of asthma or cardiopulmonary disease are expected to experience increased symptoms (Reference 9, Table 3-10).

For the highest observed PM$_{2.5}$ exposure, the hazard severity was critical. During peak exposures at the critical hazard severity level, most if not all personnel experience eye, nose, and throat irritation and respiratory effects. Visual acuity is impaired, as is overall aerobic capacity. Some personnel will not be able to perform assigned duties. Lost duty days are expected. Those with a history of asthma or cardiopulmonary disease will experience more severe symptoms. Conditions may also result in adverse, non-health related materiel/logistical impacts (Reference 9, Table 3-10).

2.4.4 Long-term health risks:

Low to Moderate: The long-term health risk assessment is low for 2008 and moderate for 2009 based on average PM$_{2.5}$ concentration, and the likelihood of exposure at this hazard severity level. A low health risk assessment for typical exposure concentrations suggest that exposure to PM$_{2.5}$ concentrations was expected to result in little or no impact on accomplishing the mission. A moderate health risk suggests a degraded mission capabilities in terms of the required mission standard and in reduced mission capability if hazards occurred during the mission (Reference 9, Table 3-3). Confidence in the long-term PM$_{2.5}$ health risk assessment is low (Reference 9, Table 3-6).

The hazard severity was marginal for average PM$_{2.5}$ sample concentrations (74 µg/m3 – 252 µg/m3). The results predict that with repeated exposures above the marginal hazard severity threshold, it is plausible that development of chronic health conditions such as reduced lung function, exacerbated chronic bronchitis, chronic obstructive pulmonary disease (COPD), asthma, atherosclerosis, or other cardiopulmonary diseases could occur in generally healthy troops. Those with a history of asthma or cardiopulmonary disease are considered to be at particular risk (Reference 9, Table 3-11).

2.5 Airborne Metals

2.5.1 Airborne Metals from PM$_{10}$
2.5.1.1 Sample data/Notes:

A total of 195 valid PM$_{10}$ airborne metal samples were collected at Camp Bucca and Umm Qasr from 2003 to 2011. None of the analyzed metals in the collected samples were found at concentrations above the 1-year negligible MEGs. Vanadium in 2008 was detected once at the same level as its representative MEG (0.068 μg/m3) but was not retained due to insufficient samples.

2.5.1.2 Short-term health risks:

None identified based on available sampling data.

2.5.1.3 Long-term health risks:

None identified based on the available sampling data.

2.5.2 Airborne Metals from PM$_{2.5}$

2.5.2.1 Sample data/Notes:

A total of 51 valid PM$_{2.5}$ airborne metal samples were collected at Camp Bucca and Umm Qasr from 2003 to 2011. None of the analyzed metals in the collected samples were found at concentrations above the 1-year negligible MEGs.

2.5.2.2 Short-term health risks:

None identified based on available sampling data.

2.5.2.3 Long-term health risks:

None identified based on the available sampling data.

2.6 Volatile Organic Compounds (VOC)

2.6.1 Exposure Guidelines

Short Term (1-hour) 1,2-Dibromo-3-chloropropane: Negligible MEG=0.75 μg/m3, Marginal MEG=5 μg/m3, Critical MEG=150 μg/m3.

2.6.1 Sample data/Notes:

The health risk assessment is based on average and peak concentration of 37 valid volatile organic chemical (VOC) air samples collected at Camp Bucca and Umm Qasr from 2003 to 2011. 1,2-Dibromo-3-chloropropane was found at concentrations above the short term MEG in one out of 8 samples (12.50% frequency) from 2008 but there were not enough samples taken in order to assess a chronic risk.

2.6.2 Short-term health risks:

Low: The short-term 1,2-Dibromo-3-chloropropane health risk assessments for peak and average sample concentrations are low for 2008. A low health risk suggests little or no impact on accomplishing the mission. Confidence in the short-term VOC health risk assessment was low (Reference 9, Table 3-6).
The hazard severity was negligible for average 1,2-Dibromo-3-chloropropane sample concentrations in 2008. For a negligible hazard severity a few personnel may experience mild effects such as headaches, nausea, lightheadedness, and weakness (Reference 9, Table 3-10).

For the highest observed 1,2-Dibromo-3-chloropropane exposure, the hazard severity was negligible. For a negligible hazard severity a few personnel may experience mild effects such as headaches, nausea, lightheadedness, and weakness (Reference 9, Table 3-10).

2.6.3 Long-term health risk

None identified based on the available sampling data.

3 Soil

3.1 Site-Specific Sources Identified

3.2 Sample data/Notes:

A total of 46 valid surface soil samples were collected from 2003 to 2011 to assess OEH health risk to deployed personnel. The primary soil contamination exposure pathways are dermal contact and dust inhalation. Typical parameters analyzed for included SVOCs, heavy metals, PCBs, pesticides, and herbicides. If the contaminant was known or suspected, other parameters may have been analyzed (i.e. total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) near fuel spills). For the risk assessment, personnel are assumed to remain at this location for 6 months to 1 year.

3.3 Short-term health risk:

Not an identified source of health risk. Currently, sampling data for soil are not evaluated for short term (acute) health risks.

3.4 Long-term health risk:

None identified based on available sample data. No parameters exceeded 1-year Negligible MEGs for dermal contact. The dust inhalation exposure pathway is addressed in Section 2 above. 4-Methylphenol (p-Cresol), Acenaphthylene, Actinium-228, Bismuth-214, Cesium-134, Cesium-137, Cobalt-60, Copper, Dimethylphthalate, Europium-152, Manganese, PCB-153, PCB-180, Phenanthrene, Protactinium-234M, Thorium-234, Total PCB (German Waste Oil Regulation), and Uranium-235 were detected in one or more samples and do not have a 1 year negligible soil MEG. The presence of a chemical without a MEG adds uncertainty to the risk assessment.

4 Water

In order to assess the health risk to U.S. personnel from exposure to water in theater, the USAPHC identified the most probable exposure pathways. These are based on the administrative information provided on the field data sheets submitted with the samples taken over the time period being evaluated. It is assumed that 100% of all U.S. personnel at Camp Bucca and Umm Qasr were directly exposed to Reverse Osmosis Water Purification Unit (ROWPU) treated and disinfected fresh bulk water, since this classification of water is primarily used for personal hygiene, showering, cooking, and for use at vehicle wash racks. Field data sheets indicate that bottled water is the only approved source...
of drinking water however in instances where bottled water was unavailable ROWPU treated water was used.

4.1 Drinking Water: Bottled or Treated Water

4.1.1 Site-Specific Sources Identified

Nova Water was the only bottled water supplier listed in the field data sheets at Camp Bucca and Umm Qasr but there were no bottled water samples. The samples included ROWPU/treated water from several water supplies located on Camp Bucca.

4.1.2 Sample data/Notes:

To assess the potential for adverse health effects to troops, the following assumptions were made about dose and duration: A conservative (protective) assumption was that personnel routinely ingested 15 L/day of bottled water for up to 365 days (1-year). It was further assumed that control measures were not used. A total of eight valid drinking water samples were collected from 2003 to 2011.

4.1.3 Short-term health risk:

Low: The short-term health risk, based on peak concentrations, from the drinking water was assessed as low. Boron, chloride, magnesium, and sulfate exceeded their 14-day 15L/d Negligible MEGs. A low short-term health risk suggests little or no impact on accomplishing the mission. Boron exceeded its respective MEG (0.93 mg/L) in 2004, 2006, and 2008. In 2004, chloride (MEG 600 mg/L), magnesium (MEG 30 mg/L), and sulfate (MEG 250 mg/L) exceeded their respective MEGs for short-term health risk. Trichloroacetic acid, Chromium, Fluoride, and Selenium were detected in samples above the Negligible 1 Year 15L/d MEG but had no associated 14-day 15L/d Negligible MEG for short-term health risk and were not assessed further.

The hazard severity was negligible for average boron, chloride, magnesium, and sulfate concentrations in drinking water in all years assessed. The results indicate that for a negligible hazard severity a few exposed personnel (if any) are expected to have noticeable health effects during mission. Exposed personnel are expected to be able to effectively perform all critical tasks during mission operations. Minimal to no degradation of abilities to conduct complex tasks are expected.

For the highest observed boron, chloride, magnesium, and sulfate concentrations in drinking water the hazard severity was negligible in all years assessed. During peak exposures at the negligible hazard severity a few exposed personnel (if any) are expected to have noticeable health effects during the mission. Exposed personnel are expected to be able to effectively perform all critical tasks during mission operations. Minimal to no degradation of abilities to conduct complex tasks are expected.

4.1.4 Long-term health risk:

Low: The long-term health risk from boron was evaluated using section 3.4.6 in TG 230 and was assessed as a low risk in 2004, 2006, and 2008 based on the average concentration, and the likelihood of exposure at this hazard severity level. There were no long-term MEGs available for chloride, magnesium, and sulfate; therefore these chemicals were not retained as potential hazards.

The hazard severity was negligible for average boron concentrations (1.13 mg/L – 4.66 mg/L). The results suggest that with repeated exposures to boron above the negligible hazard severity threshold, few exposed personnel (if any) are expected to develop delayed onset, irreversible effects.
4.2 Non-Drinking Water: Disinfected

4.2.1 Site-Specific Sources Identified

Although the primary route of exposure for most microorganisms is ingestion of contaminated water, dermal exposure to some microorganisms, chemicals, and biologicals may also cause adverse health effects. Complete exposure pathways would include drinking, brushing teeth, personal hygiene, cooking, providing medical and dental care using a contaminated water supply or during dermal contact at vehicle or aircraft wash racks.

4.2.2 Sample data/Notes:

To assess the potential for adverse health effects to troops the following assumptions were made about dose and duration: All U.S. personnel at this location were expected to remain at this site for approximately 1 year. A conservative (protective) assumption is that personnel routinely consumed less than 5L/day of non-drinking water for up to 365 days (1-year). It is further assumed that control measures and/or personal protective equipment were not used. A total of 13 disinfected bulk water (Non-Drinking) samples from 2003 to 2009 were evaluated for this health risk assessment, no samples were taken after 2009. Chloride, magnesium, and sulfate were found in concentrations exceeding the 2.5 x Negligible short-term 14-day 5L/d MEG.

4.2.3 Short-term health risks:

Low. The short-term health risk from chloride (MEG 3750 mg/L), magnesium (MEG 625 mg/L), and sulfate (MEG 1875 mg/L) exceeded their respective negligible short-term 14-day 5L/d MEG in 2009 and was assessed a low health risk. A low short-term health risk suggests little or no impact on accomplishing the mission.

The hazard severity was negligible for average chloride, magnesium, and sulfate concentrations in non-drinking water in all years assessed. The results indicate that for a negligible hazard severity a few exposed personnel (if any) are expected to have noticeable health effects during mission. Exposed personnel are expected to be able to effectively perform all critical tasks during mission operations. Minimal to no degradation of abilities to conduct complex tasks are expected.

For the highest observed chloride, magnesium, and sulfate concentrations in non-drinking water the hazard severity was negligible in all years assessed. During peak exposures at the negligible hazard severity a few exposed personnel (if any) are expected to have noticeable health effects during mission. Exposed personnel are expected to be able to effectively perform all critical tasks during mission operations. Minimal to no degradation of abilities to conduct complex tasks are expected.

4.2.4 Long-term health risks:

There were no long-term MEGs available for chloride, magnesium, or sulfate, therefore these chemicals were not retained as potential hazards.

5 Military Unique

5.1 Chemical Biological, Radiological Nuclear (CBRN) Weapons

No specific hazard sources were documented in the Defense Occupational and Environmental Health Readiness System (DOEHSRS), or the Military Environmental Surveillance Library (MESL) from 2003 through 2011 timeframe.
5.2 Depleted Uranium (DU)

No specific hazard sources were documented in the DOEHRS, or MESL from 2003 through 2011 timeframe.

5.3 Ionizing Radiation

No specific hazard sources were documented in the DOEHRS, or MESL from 2003 through 2011 timeframe.

5.4 Non-Ionizing Radiation

No specific hazard sources were documented in the DOEHRS, or MESL from 2003 through 2011 timeframe.

6. Endemic Disease

This document lists the endemic diseases reported in the region, its specific health risks and severity and general health information about the diseases. USCENTCOM MOD 11 (Reference 11) lists deployment requirements, to include immunizations and chemoprophylaxis, in effect during the timeframe of this POEMS.

6.1 Foodborne and Waterborne Diseases

Foodborne and waterborne diseases in the area are transmitted through the consumption of local food and water. Local unapproved food and water sources (including ice) are heavily contaminated with pathogenic bacteria, parasites, and viruses to which most U.S. Service Members have little or no natural immunity. Effective host nation disease surveillance does not exist within the country. Only a small fraction of diseases are identified or reported in host nation personnel. Diarrheal diseases are expected to temporarily incapacitate a very high percentage of U.S. personnel within days if local food, water, or ice is consumed. Hepatitis A and typhoid fever infections typically cause prolonged illness in a smaller percentage of unvaccinated personnel. Vaccinations are required for DOD personnel and contractors. In addition, although not specifically assessed in this document, significant outbreaks of viral gastroenteritis (e.g., norovirus) and food poisoning (e.g., Bacillus cereus, Clostridium perfringens, Staphylococcus) may occur. Key disease risks are summarized below:

Mitigation strategies were in place and included consuming food and water from approved sources, vaccinations (when available), frequent hand washing and general sanitation practices.

6.1.1 Diarrheal diseases (bacteriological)

High, mitigated to Low: Diarrheal diseases are expected to temporarily incapacitate a very high percentage of personnel (potentially over 50% per month) within days if local food, water, or ice is consumed. Mitigation strategies in place include consumption of approved food, water, and ice; hand washing; and applied food/water safety mechanisms. Field conditions (including lack of hand washing and primitive sanitation) may facilitate person-to-person spread and epidemics. Typically mild disease treated in outpatient setting; recovery and return to duty in less than 72 hours with appropriate therapy. A small proportion of infections may require greater than 72 hours limited duty, or hospitalization.

6.1.2 Hepatitis A, typhoid/paratyphoid fever, and diarrhea-protozoal
6.1.3 Short-term Health Risks:

Variable, unmitigated; Low, mitigated: The overall unmitigated short-term risk associated with food borne and waterborne diseases are considered high (bacterial diarrhea, hepatitis A, typhoid/paratyphoid fever) to moderate (diarrhea-cholera, diarrhea-protozoal, brucellosis) to low (hepatitis E) if local food or water is consumed. Preventive Medicine measures reduced the risk to low. Confidence in the health risk estimate was high.

6.1.4 Long-term Health Risks:

None identified based on available data.

6.2 Arthropod Vector-Borne Diseases

During the warmer months, the climate and ecological habitat support populations of arthropod vectors, including mosquitoes, ticks, mites, and sandflies. Significant disease transmission is sustained countrywide, including urban areas. Mitigation strategies were in place and included proper wear of treated uniforms, application of repellent to exposed skin, and use of bed nets and chemoprophylaxis (when applicable). Additional methods included the use of pesticides, reduction of pest/breeding habitats, and engineering controls.

6.2.1 Malaria

None: Indigenous transmission of malaria in Iraq was eliminated as of 2008 reducing risk among personnel exposed to mosquito bites to None.

6.2.2 Leishmaniasis

Moderate, mitigated to Low: The disease risk is moderate during the warmer months when sandflies are most prevalent, but reduced to low with mitigation measures. Mitigation strategies in place include Individual Protective Measures (IPM) practices, permethrin treated uniforms, pesticides, reduction of pest/breeding habitats, and engineering controls. Leishmaniasis is transmitted by sand flies. There are two forms of the disease; cutaneous (acute form) and visceral (a more latent form of the disease). The leishmaniasis parasites may survive for years in infected individuals and this infection may go unrecognized by physicians in the U.S. when infections become symptomatic years later. Cutaneous infection is unlikely to be debilitating, though lesions may be disfiguring. Visceral leishmaniasis disease can cause severe febrile illness which typically requires hospitalization with convalescence over 7 days.

6.2.3 Crimean-Congo hemorrhagic fever

Moderate, mitigated to Low: Unmitigated risk is moderate, but reduced to low with mitigation measures. Crimean-Congo hemorrhagic fever occurs in rare cases (less than 0.1% per month attack...
rate in indigenous personnel) and is transmitted by tick bites or occupational contact with blood or secretions from infected animals. The disease typically requires intensive care with fatality rates from 5% to 50%.

6.2.4 Sandfly fever

Moderate, mitigated to Low: Sandfly fever has a moderate risk with potential disease rates from 1% to 10% per month under worst case conditions. Mitigation measures reduced the risk to low. The disease is transmitted by sandflies and occurs more commonly in children though adults are still at risk. Sandfly fever disease typically resulted in debilitating febrile illness requiring 1 to 7 days of supportive care followed by return to duty.

6.2.5 Sindbis (and Sindbis-like viruses)

Low: Sindbis and sindbis-like viruses are maintained in a bird-mosquito cycle in rural areas and occasionally caused limited outbreaks among humans. The viruses are transmitted by a variety of *Culex* mosquito species found primarily in rural areas. A variety of bird species may serve as reservoir or amplifying hosts. Extremely rare cases (less than 0.01% per month attack rate) could have occurred seasonally (April - November). Debilitating febrile illness often accompanied by rash, typically requires 1 to 7 days of supportive care; significant arthralgias may persist for several weeks or more in some cases. This disease is associated with a low health risk estimate.

6.2.6 Rickettsioses, tickborne (spotted fever group)

Low: Rare cases (less than 0.1% per month) of rickettsioses disease are possible among personnel exposed to tick bites. Rickettsioses are transmitted by multiple species of hard ticks, including *Rhipicephalus* spp., which are associated with dogs. Other species of ticks, including *Ixodes* are also capable of transmitting rickettsial pathogens in this group. In addition to dogs, various rodents and other animals also may serve as reservoirs. Ticks are most prevalent from April through November. Incidents can result in debilitating febrile illness, which may require 1 to 7 days of supportive care followed by return to duty. The health risk of rickettsial disease is low.

6.2.7 Typhus-murine (fleaborne)

Low: Typhus-murine has a low risk estimate and is assessed as present, but at unknown levels. Rare cases are possible among personnel exposed to rodents (particularly rats) and flea bites. Incidents may result in debilitating febrile illness typically requiring 1 to 7 days of supportive care followed by return to duty.

6.2.8 West Nile fever

Low: West Nile fever is present. The disease is maintained by the bird population and transmitted to humans via mosquito vector. Typically, infections in young, healthy adults were asymptomatic although fever, headache, tiredness, body aches (occasionally with a skin rash on trunk of body), and swollen lymph glands can occurred. This disease is associated with a low risk estimate.

6.2.9 Short-term health risks:

Low: The unmitigated risk is moderate for leishmaniasis - cutaneous (acute), Crimean-Congo hemorrhagic fever, and sandfly fever; low for, sindbis, rickettsioses-tickborne, typhus-fleaborne, and West Nile fever. No hazard from malaria (2008 - 2011). Risk is reduced to low by proper wear of the uniform and application of repellent to exposed skin. Confidence in the risk estimate is high.
6.2.10 Long-term health risks:

Low: The unmitigated risk is moderate for leishmaniasis-visceral (chronic). Risk is reduced to low by proper wear of the uniform and application of repellent to exposed skin. Confidence in the risk estimate is high.

6.3 Water Contact Diseases

Tactical operations or recreational activities that involve extensive contact with surface water such as lakes, streams, rivers, or flooded fields may result in significant exposure to leptospirosis and schistosomiasis. Arid portions of Iraq without permanent or persistent bodies of surface water do not support transmission of leptospirosis or schistosomiasis. Risk was restricted primarily to areas along rivers and lakes. These diseases can debilitate personnel for up to a week or more. Leptospirosis risk typically increases during flooding. In addition, although not specifically assessed in this document, bodies of surface water are likely to be contaminated with human and animal waste. Activities such as wading or swimming may result in exposure to enteric diseases including diarrhea and hepatitis via incidental ingestion of water. Prolonged water contact also may lead to the development of a variety of potentially debilitating skin conditions including bacterial or fungal dermatitis. Mitigation strategies were in place and included avoiding water contact and recreational water activities, proper wear of uniform (especially footwear), and protective coverings for cuts/abraded skin.

6.3.1 Leptospirosis

Moderate, mitigated to Low: Human infections occur seasonally (typically April through November) through exposure to water or soil contaminated by infected animals and is associated with wading, and swimming in contaminated, untreated open water. The occurrence of flooding after heavy rainfall facilitates the spread of the organism because as water saturates the environment leptospirosis present in the soil passes directly into surface waters. Leptospirosis can enter the body through cut or abraded skin, mucous membranes, and conjunctivae. Infection may also occur from ingestion of contaminated water. The acute, generalized illness associated with infection may mimic other tropical diseases (for example, dengue fever, malaria, and typhus), and common symptoms include fever, chills, myalgia, nausea, diarrhea, cough, and conjunctival suffusion. Manifestations of severe disease can include jaundice, renal failure, hemorrhage, pneumonitis, and hemodynamic collapse. Recreational activities involving extensive water contact may result in personnel being temporarily debilitated with leptospirosis. Mitigation strategies in place include avoiding water contact and recreational water activities; proper wear of uniform, especially footwear, and protective coverings for cuts/abraded skin. This disease is associated with a moderate health risk estimate.

6.3.2 Schistosomiasis

Moderate, mitigated to Low: Humans are the principal reservoir for schistosomes; humans shed schistosome eggs in urine or feces. Animals such as cattle and water buffalo may also be significant reservoirs. Rare cases (less than 0.1% per month attack rate) may occur seasonally (typically April through November) among personnel wading or swimming in lakes, streams, or irrigated fields which were frequently contaminated with human and animal waste containing schistosome eggs. In groups with prolonged exposure to heavily contaminated foci, attack rates may exceed 10%. Exceptionally heavy concentrations of schistosomes may occur in discrete foci, which were difficult to distinguish from less contaminated areas. In non-immune personnel exposed to such foci, rates of acute schistosomiasis may be over 50%. Mild infections are generally asymptomatic. In very heavy acute infections, a febrile illness (acute schistosomiasis) may occur, especially with *Schistosoma japonicum* and *S. mansoni*, requiring hospitalization and convalescence over 7 days. This disease is associated
with a moderate health risk estimate.

6.3.3 Short-term health risks:

Low: Unmitigated Health risk of schistosomiasis and leptospirosis is moderate during warmer months. Mitigation measures reduce the risk to low. Confidence in the health risk estimate is high.

6.3.4 Long-term health risks:

None identified based on available data.

6.4 Respiratory Diseases

Although not specifically assessed in this document, deployed U.S. forces may be exposed to a wide variety of common respiratory infections in the local population. These include influenza, pertussis, viral upper respiratory infections, viral and bacterial pneumonia, and others. The U.S. military populations living in close-quarter conditions are at risk for substantial person-to-person spread of respiratory pathogens. Influenza is of particular concern because of its ability to debilitate large numbers of unvaccinated personnel for several days. Mitigation strategies were in place and included routine medical screenings, vaccination, enforcing minimum space allocation in housing units, implementing head-to-toe sleeping in crowded housing units, implementation of proper PPE when necessary for healthcare providers and detention facility personnel.

6.4.1 Tuberculosis (TB)

Moderate, mitigated to Low: Potential health risk to U.S. personnel is moderate, mitigated to low, year round. Transmission typically requires close and prolonged contact with an active case of pulmonary or laryngeal tuberculosis (TB), although it also can occur with more incidental contact. The Army Surgeon General has defined increased risk in deployed Soldiers as indoor exposure to locals or third country nationals of greater than one hour per week in a highly endemic active TB region. Mitigation strategies include routine medical screenings; enforcing minimum space allocation in housing units; implementing head-to-toe sleeping in crowded housing units; and implementation of proper personal protective equipment (PPE), when necessary (treating active case, detainee operations). Additional mitigation included active case isolation in negative pressure rooms, when available.

6.4.2 Meningococcal meningitis

Low: Meningococcal meningitis poses a low risk and is transmitted from person to person through droplets of respiratory or throat secretions. Close and prolonged contact facilitates the spread of this disease. Meningococcal meningitis is potentially a very severe disease typically requiring intensive care; fatalities may occur in 5-15% of cases.

6.4.3 Short-term health risks:

Low: Moderate (TB) to low (for meningococcal meningitis). Overall risk was reduced to low with mitigation measures. Confidence in the health risk estimate is high.

6.4.4 Long-term health risks:

None identified based on available data. Tuberculosis is evaluated as part of the Post Deployment Health Assessment (PDHA). A TB skin test is required post-deployment if potentially exposed and is based upon individual service policies.
6.5 Animal-Contact Diseases

6.5.1 Rabies

Moderate, mitigated to Low: Rabies posed a year-round moderate risk. Occurrence in local animals was well above U.S. levels due to the lack of organized control programs. Dogs were the primary reservoir of rabies in Iraq, and a frequent source of human exposure. In June 2008, the New Jersey Health department in The United States reported a confirmed case of rabies in a mixed-breed dog recently imported from Iraq. Rabies is transmitted by exposure to the virus-laden saliva of an infected animal, typically through bites, but could occur from scratches contaminated with the saliva. No cases of rabies acquired in Iraq have been identified in U.S. Service Members to date. The vast majority (>99%) of persons who develop rabies disease will do so within a year after a risk exposure, there have been rare reports of individuals presenting with rabies disease up to six years or more after their last known risk exposure. Mitigation strategies included command emphasis of CENTCOM GO 1B, reduction of animal habitats, active pest management programs, and timely treatment of feral animal scratches/bites.

6.5.2 Anthrax

Low: Anthrax cases are rare in indigenous personnel, and pose a low risk to U.S. personnel. Anthrax is a naturally occurring infection; cutaneous anthrax is transmitted by direct contact with infected animals or carcasses, including hides. Eating undercooked infected meat may result in contracting gastrointestinal anthrax. Pulmonary anthrax is contracted through inhalation of spores and is extremely rare. Mitigation measures included consuming approved food sources, proper food preparation and cooking temperatures, avoidance of animals and farms, dust abatement when working in these areas, vaccinations, and proper PPE for personnel working with animals.

6.5.3 Q-Fever

Moderate, mitigated to Low: Potential health risk to U.S. personnel is moderate, but mitigated to low, year round. Rare cases are possible among personnel exposed to aerosols from infected animals, with clusters of cases possible in some situations. Significant outbreaks (affecting 1-50%) can occur in personnel with heavy exposure to barnyards or other areas where animals are kept. Unpasteurized milk may also transmit infection. The primary route of exposure is respiratory, with an infectious dose as low as a single organism. Incidence could result in debilitating febrile illness, sometimes presenting as pneumonia, typically requiring 1 to 7 days of inpatient care followed by return to duty. Mitigation strategies in place as listed in paragraph 6.5.2 except for vaccinations.

6.5.4 H5N1 avian influenza

Low: Potential health risk to U.S. personnel is low. Although H5N1 avian influenza (AI) is easily transmitted among birds, bird-to-human transmission is extremely inefficient. Human-to-human transmission appears to be exceedingly rare, even with relatively close contact. Extremely rare cases (less than 0.01% per month attack rate) could occur. Incidence could result in very severe illness with fatality rate higher than 50 percent in symptomatic cases. Mitigation strategies included avoidance of birds/poultry and proper cooking temperatures for poultry products.

6.5.5 Short-term health risks:

Low: The short-term unmitigated risk is moderate for rabies, and Q-fever, to low for anthrax, and H5N1 avian influenza. Mitigation measures reduced the overall risk to low. Confidence in risk estimate is
6.5.6 Long-term health risks:

Low: The incubation period for rabies can be several years in rare cases so there is a possibility of low long term health risk.

7 Venomous Animal/Insect

All information was taken directly from the Clinical Toxinology Resources web site from the University of Adelaide, Australia (Reference 2). The species listed below have home ranges that overlap the location of Camp Bucca and Umm Qasr and vicinity, and may present a health risk if they are encountered by personnel. See Section 9 for more information about pesticides and pest control measures.

7.1 Spiders

- *Latrodectus pallidus*: Clinical effects uncertain, but related to medically important species, therefore major envenoming cannot be excluded.

7.2 Scorpions

- *Androctonus crassicauda* (black scorpion): Severe envenoming possible and potentially lethal, however most stings cause only severe local pain.

- *Buthacus leptochelys, Buthacus macrocentrus,* and *Orthochirus scrobiculosus*: Clinical effects unknown; there are a number of dangerous Buthid scorpions, but there are also some known to cause minimal effects only. Without clinical data it is unclear where this species fits within that spectrum.

- *Scorpio maurus*: Mild envenoming only, not likely to prove lethal.

- *Hemiscorpius lepturus*: Severe envenoming possible, potentially lethal.

- *Hottentotta saulcyi, Hottentotta scaber,* and *Hottentotta schach*: Moderate envenoming possible but unlikely to prove lethal.

7.3 Snakes

- *Cerastes cerastes* and *Cerastes gasperettii*: Potentially lethal envenoming, though unlikely.

- *Echis sochureki*: Moderate to severe, potentially lethal envenoming.

- *Psammophis schokari* and *Pseudocyclophis persicus*: Clinical effects unknown, but unlikely to cause significant envenoming.

- *Walterinnesia aegyptia*: Clinical affects unknown, but potentially lethal envenoming, though unlikely, cannot be excluded.

7.4 Short-term health risk:

Low: If encountered, effects of venom vary with species from mild localized swelling (e.g. *S. maurus*) to potentially lethal effects (e.g. *W. aegyptia*). See effects of venom above. Mitigation strategies included
7.5 Long-term health risk:

None identified.

8 Heat/Cold Stress

8.1 Heat

Summer (June - September) monthly mean temperatures range from 109 degrees Fahrenheit (°F) to 115 °F with an average temperature of 113 °F based on historical climatological data from the U.S. Air Force Combat Climatology Center, 14th Weather Squadron. The health risk of heat stress/injury based on temperatures alone is low (< 78 °F) from December – February, moderate (78-81.9°F) March and November, and extremely high (≥ 88°F) from April – October. However, work intensity and clothing/equipment worn pose greater health risk of heat stress/injury than environmental factors alone (Goldman 2001). Managing risk of hot weather operations included monitoring work/rest periods, proper hydration, and taking individual risk factors (e.g. acclimation, weight, and physical conditioning) into consideration. Risk of heat stress/injury was reduced with preventive measures.

8.1.1 Short-term health risk:

Low to Extremely High, mitigated to Low: Risk of heat injury in unacclimatized or susceptible populations (older, previous history of heat injury, poor physical condition, underlying medical/health conditions), and those under operational constraints (equipment, PPE, vehicles) is high from April – October, moderate March and November, and low from December – February. The risk of heat injury was reduced to low through preventive measures such as work/rest cycles, proper hydration and nutrition, and monitoring WBGT. Confidence in the health risk estimate is low (Reference 9, Table 3-6).

8.1.2 Long-term health risk:

Low: The long-term risk is low. However, the risk may be greater for certain susceptible persons—those older (i.e., greater than 45 years), in lesser physical shape, or with underlying medical/health conditions. Long-term health implications from heat injuries are rare but may occur, especially from more serious injuries such as heat stroke. It is possible that high heat in conjunction with various chemical exposures may increase long-term health risks, though specific scientific evidence is not conclusive. Confidence in these risk estimates is medium (Reference 9, Table 3-6).

8.2 Cold

8.2.1 Short-term health risks:

Winter (December - March) temperatures range from 46 °F to 57 °F with an average temperature of 51 °F based on historical climatological data from the U.S. Air Force Combat Climatology Center, 14th Weather Squadron. Because even on warm days a significant drop in temperature after sunset by as much as 40 °F can occur, there is a risk of cold stress/injury from December – February. The risk assessment for Non-Freezing Cold Injuries (NFCl), such as chilblain, trench foot, and hypothermia, is low based on historical temperature and precipitation data. Frostbite is unlikely to occur because temperatures rarely drop below freezing. However, personnel may encounter significantly lower temperatures during field operations at higher altitudes. As with heat stress/injuries, cold stress/injuries...
are largely dependent on operational and individual factors instead of environmental factors alone.

Low: The health risk of cold injury is low. Confidence in the health risk estimate is medium.

8.1.2 Long-term health risk:

Low: The health risk of cold injury is low. Confidence in the health risk estimate is high

9 Noise

9.1 Continuous

An occupational and environmental health site assessment (OEHSA) and Preventive Medicine Base Camp Assessments indicate that the generators are located inside a container that baffles sound and that the soldiers routinely exposed to excessive noise are provided hearing protection (References 12 and 13).

9.1.1 Short and long-term health risks:

Low. Low risk to the majority of personnel working near major noise sources who wear the provided hearing protection.

9.2 Impulse

Preventive Medicine Base Camp Assessments document that soldiers are not routinely exposed to noise levels in excess of 85 dBA in work and living areas (Reference 13).

9.2.1 Short-term and Long-term health risks:

None identified.

10 Unique Incidents/Concerns

10.1 Potential environmental contamination sources

DoD personnel are exposed to various chemical, physical, ergonomic, and biological hazards in the course of performing their mission. These types of hazards depend on the mission of the unit and the operations and tasks which the personnel are required to perform to complete their mission. The health risk associated with these hazards depends on a number of elements including what materials are used, how long the exposure last, what is done to the material, the environment where the task or operation is performed, and what controls are used. The hazards can include exposures to heavy metal particulates (e.g. lead, cadmium, manganese, chromium, and iron oxide), solvents, fuels, oils, and gases (e.g. carbon monoxide, carbon dioxide, oxides of nitrogen, and oxides of sulfur). Most of these exposures occur when performing maintenance task such as painting, grinding, welding, engine repair, or movement through contaminated areas. Exposures to these occupational hazards can occur through inhalation (air), skin contact, or ingestion; however exposures through air are generally associated with the highest health risk.

10.2 Waste Sites/Waste Disposal

Solid waste sites are operated by a contractor and solid waste is regularly collected in rolling dumpsters.
with lids located near the front gate of Camp Bucca. The bins are transported to Basrah and then to Camp Adder for incineration; waste is properly segregated at Camp Adder. There was a fire at the Iraqi run waste water treatment facility at Camp Bucca in July 2011 that rendered it inoperable. Blackwater and greywater collects in an evaporation pond near the facility, 0.3 miles from the DoD base. A trench was dug as an emergency fix and waste is pumped from the trench to the pond periodically by truck. There is no management for storm water and it is very typical to have standing water during the rainy season (January to April). The OEHSA report recommends using plastic grate walkways and gravel to maintain storm water while also ensuring mosquito dunks are on hand to reduce mosquito populations (Reference 12).

10.3 Fuel/petroleum products/industrial chemical spills

There was a fuel point located near the dining facility (DFAC), Potable Water, and generators at Camp Bucca. There are multiple spills located throughout Camp Bucca that were not remediated. Petroleum oil is often found outside of secondary containment and the generators were in poor condition requiring frequent cooling. This resulted in a large uncontained spill under the units that is not remediated. Potential releases are most likely to occur near generators and maintenance areas where secondary containment is not practiced at Camp Bucca (Reference 12).

10.4 Pesticides/Pest Control:

The health risk of exposure to pesticide residues is considered within the framework of typical residential exposure scenarios, based on the types of equipment, techniques, and pesticide products that have been employed, such as enclosed bait stations for rodenticides, various handheld equipment for spot treatments of insecticides and herbicides, and a number of ready-to-use (RTU) methods such as aerosol cans and baits. The control of rodents required the majority of pest management inputs, with the acutely toxic rodenticides staged as solid formulation lethal baits placed in tamper-resistant bait stations indoors and outdoors throughout cantonment areas. Nuisance insects, including biting and stinging insects such as bees, wasps, and ants, also required significant pest management inputs. Use of pesticides targeting against these pests generally involved selection of compounds with low mammalian toxicity and short-term residual using pinpoint rather than broadcast application techniques. The use of pesticide application is reported in the MESL data portal for Camp Bucca and Umm Qasr (2003 to 2011). For each pesticide product applied during this period, the EPA approved label has been archived, providing a framework how each pesticide handled and applied (see below) (References 12 and 13).

10.4.1 Insecticides

A detachment entomologist sprayed the exterior and interior of various containerized housing units (CHUs) with Pest Tabs in response to any complaints. Insecticides used to control ants, bees, crickets, fleas, flies, lice, mosquitoes, spiders, termites, and wasps include: Lambda- Cyhalothrin (Reference 12).

10.4.2 Avian Pesticides

4-Aminopyridine was used to control the pigeon population at port Umm Qasr. The pigeon population in the warehouse at Port Umm Qasr that was being used to house U.S. soldiers was observed from 50 to over 200 pigeons in May 2003. A major health concern with bird fecal matter is a systemic mycosis known as Histoplasmosis which is transmitted through inhalation of the airborne fungal spore Histoplasma capsulatum. This fungus grows naturally in the soil and is picked up by birds and bats and transmitted through their feces. (Reference 13).
10.4.3. Short-term and Long-term health risks

Low: Long term health risk is low. Confidence in the health risk assessment is medium (Reference 9, Table 3-6).

10.5 Asbestos

No data available.

10.6 Lead Based Paint

No data available.

10.7 Burn Pit

Burn pits ceased to be used after 2011 and all solid waste was transported to Camp Adder. The data listed in this section are from samples taken near the burn pits at Camp Bucca during the time period when the burn pits were active. While not specific to Camp Bucca and Umm Qasr, the consolidated epidemiological and environmental sampling and studies on burn pits that have been conducted as of the date of this publication have been unable to determine whether an association does or does not exist between exposures to emissions from the burn pits and long-term health effects (Reference 7). The Institute of Medicine’s review of long-term health consequences of exposure to burn pits in Iraq and Afghanistan suggests that service in Iraq or Afghanistan (i.e., a broader consideration of air pollution than exposure only to burn pit emissions) may be associated with long-term health effects, particularly in susceptible (e.g., those who have asthma) or highly exposed subpopulations, such as those who worked at or near the burn pit. Such health effects would be due mainly to high ambient concentrations of PM from both natural and anthropogenic sources, including military sources. If that broader exposure to air pollution turns out to be relevant, potentially related health effects of concern are respiratory and cardiovascular effects and cancer. Susceptibility to the PM health effects could be exacerbated by other exposures, such as stress, smoking, local climatic conditions, and co-exposures to other chemicals that affect the same biologic or chemical processes. Individually, the chemicals measured at burn pit sites in the study were generally below concentrations of health concern for general populations in the United States. However, the possibility of exposure to mixtures of the chemicals raises the potential for health outcomes associated with cumulative exposure to combinations of the constituents of burn pit emissions and emissions from other sources.

10.7.1 Particulate matter, less than10 micrometers (PM$_{10}$)

Exposure Guidelines:

<table>
<thead>
<tr>
<th>Short Term (24-hour) PM$_{10}$ (μg/m3):</th>
<th>Long-term PM$_{10}$ MEG (μg/m3):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible MEG = 250</td>
<td>Not defined and not available.</td>
</tr>
<tr>
<td>Marginal MEG = 420</td>
<td></td>
</tr>
<tr>
<td>Critical MEG = 600</td>
<td></td>
</tr>
</tbody>
</table>

10.7.2.1 Sample data/Notes:

A total of 27 valid PM$_{10}$ air samples identified with burn pits were collected from 2006–2009. The range of 24-hour PM$_{10}$ concentrations was 68 μg/m3 – 923 μg/m3 with an average concentration of 287 μg/m3.
10.7.2.2 Short-term health risks:

Low: The short-term PM$_{10}$ health risk assessment was low based on average and peak PM$_{10}$ concentrations, and the likelihood of exposure at these hazard severity levels. A low health risk assessment for typical and peak exposure concentrations suggests that short-term exposure to PM$_{10}$ at Camp Bucca and Umm Qasr was expected to have little to no impact on the mission (Reference 9, Table 3-2). Daily average health risk levels for PM$_{10}$ show no hazard for 62.5%, low health risk for 25%, moderate health risk for 4.2%, and high health risk for 8.3% of the time. Confidence in the short-term PM$_{10}$ health risk assessment was low (Reference 9, Table 3-6).

The hazard severity was marginal for average PM$_{10}$ exposures. The results indicate that for a marginal hazard severity a majority of personnel will experience notable eye, nose, and throat irritation and some respiratory effects. Some lost-duty days are expected. Significant aerobic activity will increase risk. Those with a history of asthma or cardiopulmonary disease are expected to experience increased symptoms (Reference 9, Table 3-10).

For the highest observed PM$_{10}$ exposure, the hazard severity was critical. During peak exposures at the critical hazard severity level, most if not all personnel experience eye, nose, and throat irritation and respiratory effects. Visual acuity is impaired, as is overall aerobic capacity. Some personnel will not be able to perform assigned duties. Lost duty days are expected. Those with a history of asthma or cardiopulmonary disease will experience more severe symptoms. Conditions may also result in adverse, non-health related materiel/logistical impacts (Reference 9, Table 3-10).

10.7.2.3 Long-term health risk:

Not Evaluated—no available health guidelines. The EPA has retracted its long-term NAAQS for PM$_{10}$ due to an inability to clearly link chronic health effects with chronic PM$_{10}$ exposure levels.

10.7.3 Particulate matter, less than 2.5 micrometers (PM$_{2.5}$)

10.7.4 Exposure Guidelines

Short Term (24-hour) PM$_{2.5}$ (μg/m3):
- Negligible MEG = 65
- Marginal MEG = 250
- Critical MEG = 500

Long-term PM$_{2.5}$ MEG (μg/m3):
- Negligible MEG = 15
- Marginal MEG = 65

10.7.4.1 Sample data/Notes:

A total of 48 valid PM$_{2.5}$ air samples identified with burn pits were collected in 2008 and 2009. The range of 24-hour PM$_{2.5}$ concentrations was 24 μg/m3 – 1642 μg/m3 with an average concentration of 186 μg/m3.

10.7.2.2 Short-term health risks:

Moderate to High: The short-term PM$_{2.5}$ health risk assessment for peak sample concentrations is moderate for 2008 and high for 2009 and for average sample concentrations, low for 2008 and 2009. A low health risk suggests little or no impact on accomplishing the mission. A moderate health risk suggests a degraded mission capabilities in terms of the required mission standard and will result in reduced mission capability if hazards occur during the mission. A high health risk suggests a significant degradation of mission capabilities in terms of the required mission standard, inability to accomplish all...
parts of the mission, or inability to complete the mission to standard if hazards occur during the mission (Reference 9, Table 3-2). Daily average health risk levels for PM$_{2.5}$ show no hazard for 48.1%, low health risk for 44.4%, moderate health risk for 3.7%, and high health risk for 3.7% of the time. Confidence in the short-term PM$_{2.5}$ health risk assessment was low (Reference 9, Table 3-6).

The hazard severity was negligible to marginal for average PM$_{2.5}$ sample concentrations. The hazard severity was negligible in 2008 and marginal in 2009. The results indicate that for a negligible hazard severity a few personnel may experience notable mild eye, nose, or throat irritation; most personnel will experience only mild effects. Pre-existing health conditions (e.g., asthma, or cardiopulmonary diseases) may be exacerbated. For a marginal hazard severity a majority of personnel will experience notable eye, nose, and throat irritation and some respiratory effects. Some lost-duty days are expected. Significant aerobic activity will increase risk. Those with a history of asthma or cardiopulmonary disease are expected to experience increased symptoms (Reference 9, Table 3-10).

For the highest observed PM$_{2.5}$ exposure, the hazard severity was critical. During peak exposures at the critical hazard severity level, most if not all personnel experience eye, nose, and throat irritation and respiratory effects. Visual acuity is impaired, as is overall aerobic capacity. Some personnel will not be able to perform assigned duties. Lost duty days are expected. Those with a history of asthma or cardiopulmonary disease will experience more severe symptoms. Conditions may also result in adverse, non-health related materiel/logistical impacts (Reference 9, Table 3-10).

2.4.4 Long-term health risks:

Low to Moderate: The long-term health risk assessment is low for 2008 and moderate for 2009 based on average PM$_{2.5}$ concentration, and the likelihood of exposure at this hazard severity level. A low health risk assessment for typical exposure concentrations suggest that exposure to PM$_{2.5}$ concentrations was expected to result in little or no impact on accomplishing the mission. A moderate health risk suggests a degraded mission capabilities in terms of the required mission standard and in reduced mission capability if hazards occurred during the mission (Reference 9, Table 3-3). Confidence in the long-term PM$_{2.5}$ health risk assessment is low (Reference 9, Table 3-6).

The hazard severity was marginal (74 μg/m3 – 252 μg/m3) for average PM$_{2.5}$ sample concentrations. The results predict that with repeated exposures above the marginal hazard severity threshold, it is plausible that development of chronic health conditions such as reduced lung function, exacerbated chronic bronchitis, chronic obstructive pulmonary disease (COPD), asthma, atherosclerosis, or other cardiopulmonary diseases could occur in generally healthy troops. Those with a history of asthma or cardiopulmonary disease are considered to be at particular risk (Reference 9, Table 3-11).
11 References

5. DoD MESL Data Portal: https://mesl.apgea.army.mil/mesl/. Some of the data and reports used may be classified or otherwise have some restricted distribution.

9. USA PHC TG230, June 2010 Revision.

13. Port Umm Qasr Preventative Medicine Report. COL Carnevale. 24 October 2003

NOTE. The data are currently assessed using the 2010 TG230. The general method involves an initial review of the data which eliminates all chemical substances not detected above 1-yr negligible MEGs. Those substances screened out are not considered acute or chronic health hazards so are not assessed further. For remaining substances, acute and chronic health effects are evaluated separately for air water (soil is only evaluated for long term risk). This is performed by deriving separate short-term and long term population exposure level and estimates (referred to as population exposure point concentrations (PEPC)) that are compared to MEGs derived for similar exposure durations. If less than or equal to negligible MEG the risk is Low. If levels are higher than negligible then there is a chemical-specific toxicity and exposure evaluation by appropriate SMEs, which includes comparison to any available marginal, critical or catastrophic MEGs. For drinking water 15 L/day MEGs are used for the screening while site specific 5-15 L/day are used for more detailed assessment. For nondrinking water (such as that used for personal hygiene or cooking) the ‘consumption rate’ is limited to 2 L/day (similar to the EPA) which is derived by multiplying the 5 L/day MEG by a factor of 2.5. This value is used to conservatively assess non drinking uses of water.
12 Where Do I Get More Information?

If a provider feels that the Service member’s or Veteran’s current medical condition may be attributed to specific OEH exposures at this deployment location, he/she can contact the Service-specific organization below. Organizations external to DoD should contact DoD Force Health Protection and Readiness (FHP & R).

<table>
<thead>
<tr>
<th>Organization</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD Force Health Protection and Readiness (FHP & R)</td>
<td>(800) 497-6261</td>
<td>http://fhp.osd.mil</td>
</tr>
</tbody>
</table>